

**R-410A Variable Capacity Outdoor Split-System** Air Conditioning Models: 20 SEER2 YXV, AC21, AL21 Series 2 ton to 5 ton – Single Phase





### List of sections

| General                       | <br>1 S  |
|-------------------------------|----------|
| Safety                        | <br>1 C  |
| Unit installation             | <br>2 lı |
| Evacuation                    | <br>6 C  |
| Electrical connections        |          |
| Control transformer phasing . | <br>8 S  |
| System charge                 | <br>8    |
|                               |          |

### System operation ...... 10 Outdoor screen operation ..... 11 Instructing the owner ...... 24

## List of figures

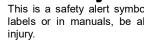
|                                                           | •                                             |    |
|-----------------------------------------------------------|-----------------------------------------------|----|
| Typical installation clearances                           | System charging connections                   | 9  |
| Alternative installation clearances                       | Main outdoor control and display              | 9  |
| Installation of vapor line5                               | Outdoor display                               | 1  |
| Underground installation5                                 | 2 ton inverter drive LED location 2           | 1  |
| Heat protection                                           | 3 ton and 4 ton inverter drive LED location 2 | 1  |
| Outdoor unit control box6                                 | 5 ton inverter drive LED location 2           | 1  |
| Typical communicating field wiring (air handler/furnace)7 | Wiring diagram - 2 ton 2                      | 7  |
| Demand response wiring8                                   | Wiring diagram - 3 ton to 5 ton 2             | .8 |
| Air handler control transformer                           |                                               |    |
|                                                           |                                               |    |

## List of tables

| Minimum / maximum operating limit conditions2 |  |
|-----------------------------------------------|--|
| Allowable vertical refrigeration piping2      |  |
| TEST mode option                              |  |
| Same priority fault storage11                 |  |
| Status code display11                         |  |
| Outdoor display menu structure                |  |

Important: Before starting the system, connect the thermostat to Wi-Fi using a local network or portable hot-spot so the thermostat and system receive the latest software updates to optimize system performance.

# **A CAUTION**


The EEV is factory installed but shipped in the closed position. Prior to any brazing, power must be applied to the Indoor Unit. If installing a coil furnace match or multi-piece air handler system, the EEV harness must be plugged into the Comm port prior to applying power to the indoor unit. Allow 1 min for the EEV to open to allow proper nitrogen flow through the coil and lineset. If you are not able to power the indoor unit before brazing the line set, a tool to manually open the EEV is available through Source 1 under part number S1-02649686000.

## **Section I: General**

The outdoor units are designed to be connected to a matching indoor coil with sweat connect lines. Sweat connect units are factory-charged with refrigerant for a nominal sized matching indoor coil plus 15 ft of field-supplied lines.

| Outdoor control faults/status code display     | 14 |
|------------------------------------------------|----|
| Inverter drive fault/status code display       | 18 |
| Thermistor resistance versus temperature table | 23 |
| Sensor connector pin definition                | 24 |
| Low suction pressure limits                    | 24 |
| Cooling charging charts                        | 25 |

## Section II: Safety



This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal

Understand and pay particular attention to the signal words DANGER, WARNING. or CAUTION.

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in death or serious injury.

WARNING indicates a potentially hazardous situation, which, if not avoided, could result in death or serious injury.

CAUTION indicates a potentially hazardous situation, which, if not avoided may result in minor or moderate injury. It is also used to alert against unsafe practices and hazards involving only property damage.

# **A WARNING**

Improper installation may create a condition where the operation of the product could cause personal injury or property damage. Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to this manual for assistance or for additional information, consult a qualified contractor, installer or service agency.

# **A CAUTION**

This product must be installed in strict compliance with the enclosed installation instructions and any applicable local, state, and national codes including, but not limited to building, electrical, and mechanical codes.

# **A**CAUTION

R-410A systems operate at higher pressures than R-22 systems. Do not use R-22 service equipment or components on R-410A equipment. Service equipment **must be rated** for R-410A.

### Inspection

As soon as you receive the unit, inspect it for possible damage during transit including copper distributor lines that may have shifting during transit and are touching either copper lines or the cabinet. If damage is evident, the extent of the damage should be noted on the carrier's delivery receipt. A separate request for inspection by the carrier's agent should be made in writing. See Local Distributor for more information.

### Requirements for installing/servicing R-410A equipment

- Gauge sets, hoses, refrigerant containers, and recovery system must be designed to handle the POE type oils, and the higher pressures of R-410A.
- Manifold sets must be high side and low side with low side retard.
- All hoses must have a 700 psig service pressure rating.
- · Leak detectors must be designed to detect HFC refrigerant.
- Recovery equipment (including refrigerant recovery containers) must be specifically designed to handle R-410A.

### Limitations

Install the unit in accordance with all national, state and local safety codes and the limitations listed below:

- Limitations for the indoor unit, coil, and appropriate accessories must also be observed.
- The outdoor unit must not be installed with any ductwork in the air stream. The outdoor fan is the propeller type and is not designed to operate against any additional external static pressure.
- The maximum and minimum conditions for operation must be observed to ensure a system will give maximum performance with minimal service.

| Air temperature at<br>outdoor coil, °F (°C)               |          | Air temperature at<br>indoor coil, °F (°C) |         |
|-----------------------------------------------------------|----------|--------------------------------------------|---------|
| Minimum                                                   | Maximum  | Minimum                                    | Maximum |
| DB Cool                                                   | DB Cool  | WB Cool                                    | WB Cool |
| 35(2)*                                                    | 125(52)* | 57(14)                                     | 72(22)  |
| *Poteronce the NOTICE in Unit Reduced Canacity Conditions |          |                                            |         |

Table 1: Minimum / maximum operating limit conditions

\*Reference the NOTICE in *Unit Reduced Capacity Conditions*.

1. The maximum allowable equivalent line length for this product is 80 ft.

## Standard refrigeration piping applications

Maximum allowable refrigeration piping varies depending on the vertical separation between the indoor and outdoor equipment. See Table 2 for allowable refrigeration piping lengths and sizing.

Table 2: Allowable vertical refrigeration piping

| Model | Liquid<br>line | Suction<br>line | Max line<br>length -<br>units on<br>equal level | Max suction<br>line riser - if<br>OD unit is<br>above ID unit | Max liquid line<br>riser - if OD<br>unit is below<br>ID unit |
|-------|----------------|-----------------|-------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|
| 24    |                | 3/4 in.         |                                                 |                                                               |                                                              |
| 36    | 3/8 in.        | 5/4 11.         | 80 ft                                           | 25 ft                                                         | 25 ft                                                        |
| 48    | 5/0 11.        | 7/8 in.         |                                                 |                                                               |                                                              |
| 60    |                | 770 111.        |                                                 |                                                               |                                                              |

## Unit reduced capacity conditions

# NOTICE

### Inverter Temperature Protection

If excessive inverter temperatures are sensed, the compressor speed / capacity is reduced until an acceptable condition is reached.

When the inverter temperature returns to an acceptable level, the system returns to normal operation.

**Over / Under Current Protection:** If a low or high Current Condition is sensed, the compressor speed/capacity is reduced until an acceptable current level is reached.

When the system reaches an acceptable current level, the compressor and fan return to normal operating conditions.

**Over / Under Voltage Protection:** If a low or high supply Voltage Condition is experienced (below 187 VAC or above 265 VAC), the compressor speed / capacity is automatically reduced until an acceptable voltage level is sensed.

When an acceptable voltage level is sensed, the system automatically returns to a normal state of operation.

**High Altitude Protection:** If the unit is installed in Altitudes of 6,500 ft / 2,000 m above sea level or higher, the compressor and outdoor fan reduce speeds to protect the system. It is not recommended these units be installed at altitudes greater than 6,500 ft / 2,000 m above sea level.

### Low Ambient Protection

**Cooling Mode:** The unit automatically adjusts to maintain cooling operation in outdoor ambient conditions down to 35 °F (2 °C). The unit reduces capacity and Low Ambient Protection (cooling mode) or cycles off if asked to provide cooling when the outdoor temperature is at or below these conditions.

## **Section III: Unit installation**

### Location

Before starting the installation, select and check the suitability of the location for both the indoor and outdoor unit. Observe all limitations and clearance requirements.

The outdoor unit must have sufficient clearance for air entrance to the condenser coil, air discharge, and service access. See Figure 1.

# NOTICE

For multiple unit installations, units must be spaced a minimum of 24 in. (61 cm) apart, coil face to coil face.

If installing the unit on a hot sun exposed roof or a paved ground area that is seasonally hot, the unit must be raised sufficiently above the roof or ground to avoid taking the accumulated layer of hot air into the outdoor unit (which can cause the unit to derate prematurely).

If the system is being installed during seasonally cold weather of 55°F or below, the preferred method is to weigh in the charge. For charging or checking the system charge at 55°F or below, see the *Optional cold weather charging* procedures near the end of Section VI: System charge. There is an Optional Cold Weather Charging accessory kit to prevent the outdoor unit from taking in cold air below 55°F. The kit part number can be found in the list of accessory kits at <u>www.simplyget-tingthejobdone.com</u>.

Provide adequate structural support for the unit.

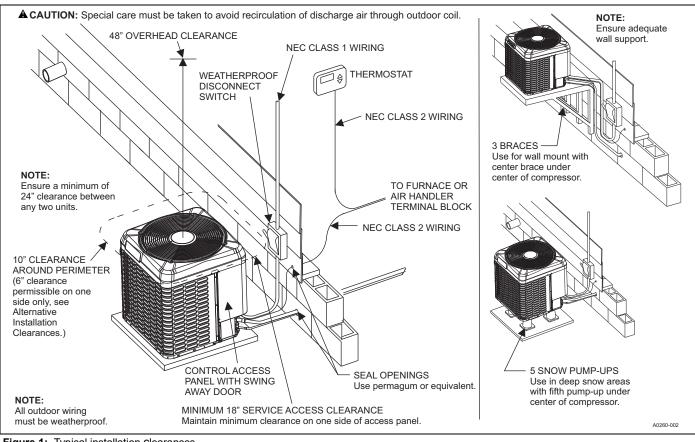



Figure 1: Typical installation Clearances

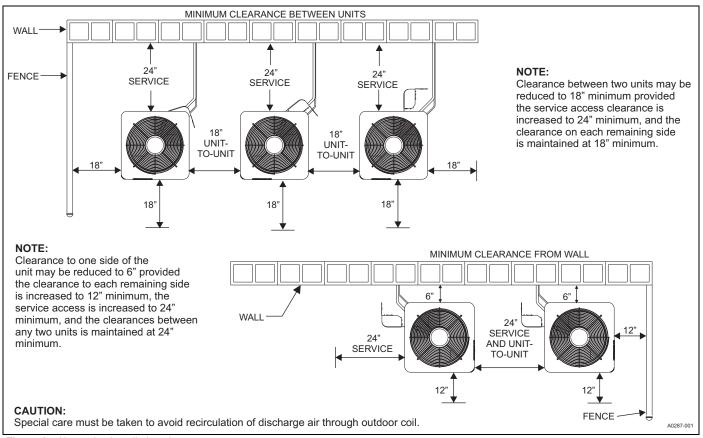



Figure 2: Alternative installation clearances

### Add-on replacement/retrofit

When this unit is being used as a replacement for an existing R-410A unit, these are matched systems and the indoor coil and outdoor unit must be replaced. Perform the following steps to ensure correct system operation and performance. Refrigeration piping change out is also recommended.

- 1. Change out of the indoor coil to an approved R-410A coil/air handling unit combination with the appropriate metering device.
- 2. Change-out of the refrigeration piping when replacing an R-22 unit with an R410-A unit is highly recommended to reduce cross-contamination of oils and refrigerants.
- 3. If change-out of the refrigeration piping is not practical, then take the following precautions.
  - Inspect the refrigeration piping for kinks, sharp bends, or other restrictions, and for corrosion.
  - Determine if there are any low spots which might be serving as oil traps.
  - Flush the refrigeration piping with a commercially available flush kit to remove as much of the existing oil and contaminants as possible.
  - Install a suction line filter drier to trap any remaining contaminants, and remove after 50 h of operation.
- 4. If the outdoor unit is being replaced due to a compressor burnout, then installation of a 100% activated alumina suction-line filter drier in the suction-line is required, in addition to the field-installed liquid-line drier. Operate the system for 10 h. Monitor the suction drier pressure drop. If the pressure drop exceeds 3 psig, replace both the suction-line and liquid-line driers. After a total of 10 h run time where the suction-line pressure drop has not exceeded 3 psig, replace the liquid line drier, and remove the suction-line drier. Never leave a suction-line drier in the system longer than 50 h of run time.

### **Ground installation**

The unit may be installed at ground level on a solid base that will not shift or settle, causing strain on the refrigerant lines and possible leaks. The unit must be installed in as level a position as possible while maintaining the clearances shown in Figure 2.

Normal operating sound levels may be objectionable if the unit is placed directly under windows of certain rooms such as bedrooms or a study.

## **A WARNING**

The outdoor unit should not be installed in an area where mud or ice could cause personal injury.

Elevate the unit sufficiently to prevent any blockage of the air entrances by snow in areas where there will be snow accumulation. Check the local weather bureau for the expected snow accumulation in your area. Isolate the unit from rain gutters to avoid any possible washout of the foundation.

### **Roof installation**

When installing units on a roof, the structure must be capable of supporting the total weight of the unit, including a pad, lintels, and rails, which should be used to minimize the transmission of sound or vibration into the conditioned space.

### Wall mount installation

Ensure to mount the outdoor unit on a solid base that is sloped to shed water, secure from settlement, and is isolated from the structural foundation or walls to prevent sound and vibration transmission into the living space.

On occasion, site conditions may require direct wall-mounted brackets to be used to locate and support the outdoor unit. In these applications, care must be taken to address unit base pan support, structural integrity, safe access and serviceability, as well as the possible sound and vibration transmission into the structure. Wall mounting requires three mounting brackets and best served by a correctly engineered solution. See the price pages for the specific part number for your application.

### Placing the unit

- 1. Provide a base in the pre-determined location.
- 2. Remove the shipping carton and inspect for possible damage.
- 3. Ensure that compressor tie-down bolts remain tightened.
- 4. Position the unit on the base provided.

### Liquid line filter-drier

The filter-drier is packaged and shipped along with the outdoor unit. It is located outside the unit next to the service valves.

# **A CAUTION**

The filter-drier is required to be installed in liquid line. The recommended location is at the indoor coil before the refrigerant metering device. It can be installed at the outdoor unit if desired.

# **A CAUTION**

Failure to use the same as the original factory drier or using a substitute drier may result in damage to the equipment.

# **A CAUTION**

Using a granular type drier may result in damage to the equipment.

# **A CAUTION**

The filter-drier must be wrapped in a wet rag while brazing.

## NOTICE

Replacements for the liquid line filter-drier <u>must be exactly the same</u> <u>as marked</u> on the original factory drier. See Source 1 for O.E.M. replacement driers.

| R-410A filter drier Source 1 part number | Apply with models |
|------------------------------------------|-------------------|
| S1-401021                                | All               |

### **Piping connections**

The outdoor unit must be connected to the indoor coil using field supplied refrigerant grade (ACR) copper tubing that is internally clean and dry. Units should be installed only with the tubing sizes for approved system combinations as specified in *Tabular Data Sheet*. The charge given is applicable for total tubing lengths up to 15 ft (4.6 m).

## NOTICE

Using a larger than specified line size could result in oil return problems. Using too small a line results in loss of capacity and other problems caused by insufficient refrigerant.

# **A WARNING**

Never install a suction-line filter-drier in the liquid line of an R-410A system. Failure to follow this warning can cause a fire, injury or death.

# **A CAUTION**

This system uses R-410A refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system. Gauge sets, hoses, refrigerant containers, and recovery system must be designed to handle R-410A. If you are unsure, consult the equipment manufacturer.

### **Precautions during line installation**

Install the refrigerant lines with as few bends as possible. Care must be taken not to damage the couplings or kink the tubing. Use clean hard drawn copper tubing where no appreciable amount of bending around obstruction is necessary. If soft copper must be used, care must be taken to avoid sharp bends which may cause a restriction.

- Install the lines so that they do not obstruct service access to the coil, air handling system, or filter.
- Care must also be taken to isolate the refrigerant lines to minimize noise transmission from the equipment to the structure.
- The vapor line must be insulated with a minimum of 1/2 in. foam rubber insulation (Armaflex or equivalent). Liquid lines that will be exposed to direct sunlight, high temperatures, or excessive humidity must also be insulated.
- Tape and suspend the refrigerant lines as shown. **Do not** allow tube metal-to-metal contact. See Figure 3.
- Use PVC piping as a conduit for all underground installations as shown in Figure 4. Buried lines should be kept as short as possible to minimize the build up of liquid refrigerant in the vapor line during long periods of shutdown.

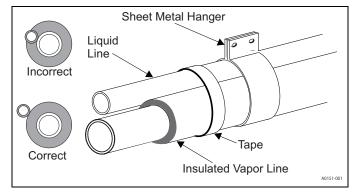



Figure 3: Installation of vapor line

5. Pack fiberglass insulation and a sealing material such as permagum around refrigerant lines where they penetrate a wall to reduce vibration and to retain some flexibility.

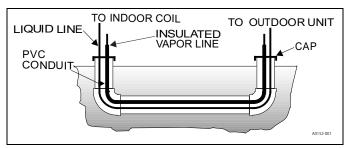



Figure 4: Underground installation

### **Precautions during brazing of lines**

All outdoor unit and indoor coil connections are copper-to-copper and should be brazed with a phosphorous-copper alloy material such as Silfos-5, silver solder or equivalent. **Do not** use soft solder. The outdoor units have reusable service valves on both the liquid and vapor connections. The system refrigerant charge for 15 ft of refrigeration piping is retained within the outdoor unit during shipping and installation. The reusable service valves are provided to evacuate and charge per this instruction.

Serious service problems can be avoided by taking adequate precautions to assure an internally clean and dry system.

# **A**CAUTION

Dry nitrogen should always be supplied through the tubing while it is being brazed, because the temperature required is high enough to cause oxidation of the copper unless an inert atmosphere is provided. The flow of dry nitrogen should continue until the joint has cooled. Always use a pressure regulator and safety valve to insure that only low pressure dry nitrogen is introduced into the tubing. Only a small flow is necessary to displace air and prevent oxidation.

# **A** CAUTION

The EEV is factory installed but shipped in the closed position. Prior to any brazing, power must be applied to the Indoor Unit. If installing a coil furnace match or multi-piece air handler system, the EEV harness must be plugged into the Comm port prior to applying power to the indoor unit. Allow 1 min for the EEV to open to allow proper nitrogen flow through the coil and lineset. If you are not able to power the indoor unit before brazing the line set, a tool to manually open the EEV is available through Source 1 under part number S1-02649686000.

### **Precautions during brazing service valve**

Precautions should be taken to prevent heat damage to the service valve by wrapping a wet rag around it as shown in Figure 5. Also, protect all painted surfaces, insulation, and plastic base during brazing. After brazing, cool the joint with the wet rag.

# **A WARNING**

This is not a backseating valve. The service access port has a valve core. Opening or closing valve does not close service access port. If the valve stem is backed out past the chamfered retaining wall, the O-ring can be damaged causing leakage or system pressure could force the valve stem out of the valve body possibly causing personal injury.

Valve can be opened by removing the service valve cap and fully inserting a hex wrench into the stem and backing out counter-clockwise until valve stem just touches the chamfered retaining wall.

### Connect the refrigerant lines using the following procedure:

- Remove the cap and Schrader core from both the liquid and vapor service valve service ports at the outdoor unit. Connect low pressure nitrogen to the liquid line service port, allow nitrogen to flow.
- 2. Braze the liquid line to the liquid service valve at the outdoor unit. Be sure to wrap the valve body with a wet rag. Allow the nitrogen to continue flowing.
- Carefully remove the plugs from the indoor coil liquid and vapor connections at the indoor coil.

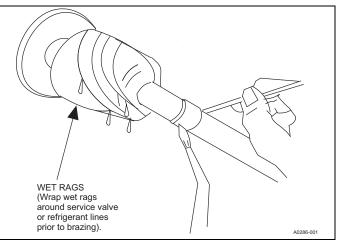



Figure 5: Heat protection

# **A CAUTION**

Do not install any coil with a furnace which is to be operated during the heating season without attaching the refrigerant lines to the coil. The coil is under pressure which must be released to prevent excessive pressure build-up and possible coil damage.

- Power must be applied to the indoor unit. Allow 1 min for the EEV to open to allow proper nitrogen flow through the coil and refrigeration piping.
- 5. Protect the vapor valve with a wet rag and braze the vapor line connection to the outdoor unit. The nitrogen flow should be exiting the system from the vapor service port connection. After this connection has cooled, remove the nitrogen source from the liquid fitting service port.
- 6. Braze the liquid line to the indoor coil liquid connection. Nitrogen should be flowing through the indoor coil.
- 7. Slide the grommet away from the vapor connection at the indoor coil and wrap with a wet rag as shown in Figure 5. Braze the vapor line to the indoor coil vapor connection. After the connection has cooled, slide the grommet back into original position. After this connection has cooled, remove the nitrogen source from the liquid fitting service port.
- 8. Replace the Schrader core in the liquid and vapor valves.
- 9. Leak test all refrigerant piping connections including the service port flare caps to be sure they are leak tight. **Do not overtighten** (between 40 in-lb and 60 in-lb maximum).

## NOTICE

Refrigeration piping and indoor coil can be pressurized to 250 psig with dry nitrogen and leak tested with a bubble type leak detector. Then release the nitrogen charge. Do not use the system refrigerant in the outdoor unit to purge or leak test.

- Evacuate the vapor line, indoor coil, and liquid line to 500 microns or less.
- 11. Replace cap on service ports. Do not remove the flare caps from the service ports except when necessary for servicing the system.

# **A**CAUTION

Do not connect manifold gauges unless trouble is suspected. Approximately 3/4 oz of refrigerant is lost each time a standard manifold gauge is connected.

- 12. Release the refrigerant charge into the system. Open both the liquid and vapor valves by removing the service valve cap and with an Allen wrench back out counter-clockwise until valve stem just touches the chamfered retaining wall. If the service valve is a ball valve, use a Crescent wrench to turn valve stem one-quarter turn counterclockwise to open. Do not overturn or the valve stem may break or become damaged. See *Precautions during brazing service valve*.
- 13. Replace service valve cap finger tight, then tighten an additional half turn (1/2 hex flat). Cap must be replaced to prevent leaks.

# **A WARNING**

Never attempt to repair any brazed connections while the system is under pressure. Personal injury could result.

14. See Section VI: System Charge for checking and recording system charge.

## **Section IV: Evacuation**

Evacuate the system to 500 microns or less. If a leak is suspected, leak test with dry nitrogen to locate the leak. Repair the leak and test again. To verify that the system has no leaks, simply close the valve to the vacuum pump suction to isolate the pump and hold the system under vacuum.

Watch the micron gauge for a few min. If the micron gauge indicates a steady and continuous rise, it is an indication of a leak.

If the gauge shows a rise, then levels off after a few min and remains fairly constant, it is an indication that the system is leak free but still contains moisture and may require further evacuation if the reading is above 500 microns.

## Section V: Electrical connections

### General information and groundng

The control box cover is held in place with five screws (one screw near each lower corner, one each at the midpoint of each side and one at top middle).

Check the electrical supply to be sure that it meets the values specified on the unit nameplate and wiring label.

Power wiring, control (low voltage) wiring, disconnect switches and over current protection must be supplied by the installer. Wire size should be sized per NEC requirements.

# **A CAUTION**

All field wiring must **use copper conductors only** and be in accordance with Local, National, Fire, Safety and Electrical Codes. This unit must be grounded with a separate ground wire in accordance with the above codes.

The complete connection diagram and schematic wiring label is located on the inside surface of the unit service access panel. An example of typical field connections can be found in Figure 7.

### **Field connections power wiring**

- 1. Install the correct size weatherproof disconnect switch outdoors and within sight of the unit, per local code.
- 2. Remove the screws at the top and sides of the corner cover. Slide the control box cover down and remove from unit.
- 3. Run power wiring from the disconnect switch to the unit.
- Route wires from disconnect through power wiring exit provided and into the unit control box as shown in Figure 1 and view the openings in Figure 6.
- 5. Make the power supply connections to the supplied terminal block.

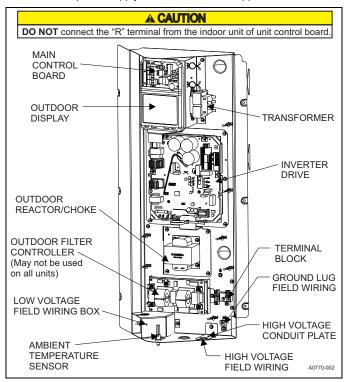



Figure 6: Outdoor unit control box

### **Field connections control wiring**

- Route low voltage wiring into bottom of control box through the hole inside the low voltage box. Connect low voltage wiring inside the low voltage box by clipping and discarding the connector plug and stripping the low voltage wires. See Figure 6. The complete connection diagram and schematic wiring label is located on the inside surface of the unit service access panel.
- Replace the control box cover removed in Step 2 of the *Field connections power wiring* procedures. All field wiring to be in accordance with national electrical codes (NEC) and/or local-city codes.
- 3. Mount the thermostat about 5 ft above the floor, where it is exposed to normal room air circulation. Do not place it on an outside wall or where it is exposed to the radiant effect from exposed glass or appliances, drafts from outside doors or supply air grilles.
- 4. Route the 24 V control wiring (NEC Class 2) from the outdoor unit to the indoor unit and thermostat. Keep the low voltage wiring 4 in. or more away from the high voltage wires that are leaving the control box.

# NOTICE

Shielded communication cable is not required for the 24 V control wiring but is strongly recommended in applications where interference from other wiring, electronics or machinery could create communication issues. Common examples of these applications include: Multi-family Housing, Medical Buildings, Offices, Data Centers and Industrial Buildings. The shielded communication cable drain wire should be connected to the chassis ground at the indoor unit. The drain wire should NOT be connected to any terminal at the wall thermostat and/or outdoor unit. If the installation contains excess conductors greater than 3-4 wires (communication equipment dependent), the excess wires should be grounded to reduce electrical noise. Use a wire nut to bundle the excess wires at each end. A single wire should then be connected to "chassis ground" (near

the transformer or ground lug) as shown in Figure 7.

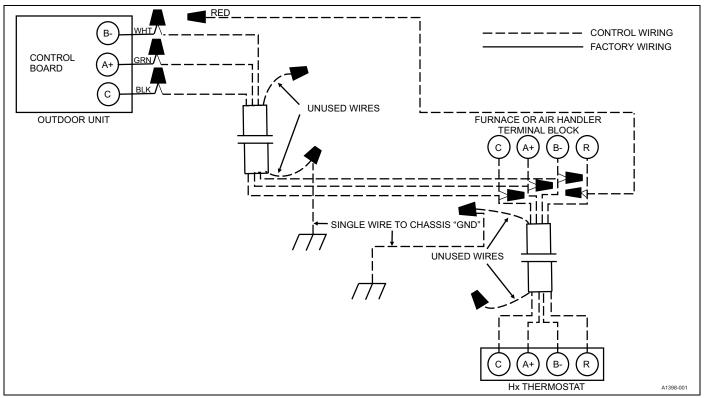



Figure 7: Typical communicating field wiring (air handler/furnace)

### Demand response (load shedding)

The main outdoor control has a conventional 24 VAC input (DR) for utility demand response signals. When a 24 VAC signal is present on the DR input, the Hx thermostat adjusts the indoor temperature setpoint by the user selected setting. For further details on available settings, refer to the Hx thermostat *Installation and Operation Manual*. The DR input terminal location can be found in Figure 11 and typical wiring is found in Figure 8.

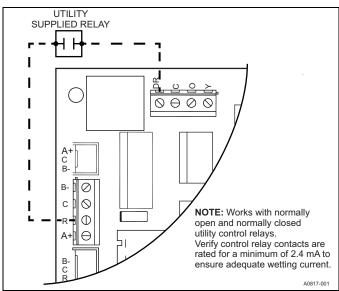



Figure 8: Demand response wiring

## Section VI: Control transformer phasing

Outdoor line voltage input wiring is designated as L1 and L2. Indoor air handling unit line voltage input wiring is designated as L1 and L2. Indoor gas furnace line voltage input wiring is designated as L1 and NEUTRAL. The L1 connection indoors must be the same phase or leg of power connected to L1 outdoors. To perform a transformer phasing test, there must be a 24VAC R thermostat wire connected to the indoor section and capped off at the outdoor section as shown in Figure 7. Do not connect the indoor R wire to the outdoor equipment. This wire is for testing purposes only.

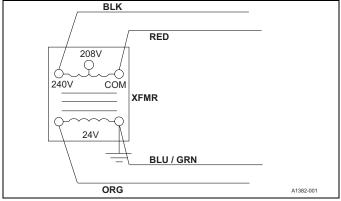



Figure 9: Air handler control transformer

- 1. If indoor equipment is an air handler, confirm the wiring connected to the air handler transformer is as shown in Figure 9. If not, correct as necessary.
- 2. With indoor and outdoor equipment powered, test volts AC from outdoor L1 line voltage connection to indoor R connection.
- If approximately 96 VAC is found, control transformers should be in phase. If approximately 144 VAC is found, control transformers are not in phase. If not in phase, remove line voltage power from outdoor equipment. Reverse the FIELD L1 and L2 wiring connections on the outdoor unit (TB) terminal block.
- 4. Re-apply power and perform above test.

### Section VII: System charge

After completion of system connections, apply power to the system. Before starting the system, connect the thermostat to Wi-Fi using a local network or portable hot-spot so the thermostat and system receive the latest software updates to optimize system performance. Utilize the Hx thermostat to discover the system components and identify the indoor and outdoor communicating equipment, AVV air handler or MVC modular blower with electric heat. Inputs to air handler control board come from the thermostat, which are communicated from the main control of the outdoor unit. This maintains correct sensible/latent balance during cooling and correct discharge temperature during heating.

Correct indoor unit airflow is determined by the system and requires no initial set-up by the installing contractor unless using an AVV or MVC modular blower air handler with electric heat. If a unit is using electric heat, the unit must have the electric heat airflow set at the air handler control board.

After the system is started during the initial set-up process using the Hx<sup>TM</sup> thermostat, additional fine tuning of the airflow is accomplished by selecting on of the three operating profiles. The three operating profiles include: humid, dry or normal. Select the one that best reflects the outdoor environment where the conditioned space is located. This selection adjusts the how the indoor blower and the compressor work together to manage temperature and humidity. Additional fine tune adjustments are available using the Hx thermostat. Refer to the Hx thermostat *Installation and Operation Manual* for additional detail.

The correct airflow is determined by the main outdoor control in the outdoor unit.

# **A CAUTION**

If the outdoor temperature is below 55°F, an attempt to start the compressor without at least 2 h of crankcase/stator heat can damage the compressor.

# **A**CAUTION

Refrigerant charging must only be carried out by a licensed qualified air conditioning contractor.

To ensure that your unit performs at the published levels, it is important that the indoor airflow is determined and refrigerant charge added accordingly.

### **Charging the unit**

The factory charge in the outdoor unit includes enough charge for the unit, 15 ft (4.6 m) of refrigerant piping, and the smallest indoor coil or air handler match-up. Some indoor coil or air handler matches may require additional charge.

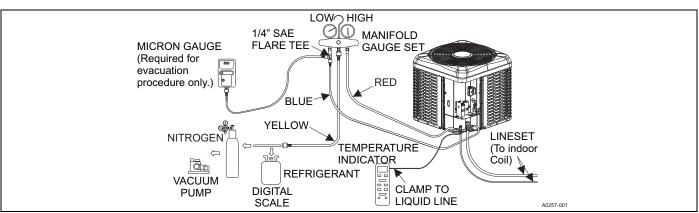



Figure 10: System charging connections

# **A**CAUTION

Compressor damage will occur if system is improperly charged. On new system installations, charge system per tabular data sheet for the matched coil and follow guidelines in this instruction.

# **A**CAUTION

Do not leave the system open to the atmosphere. Unit damage could occur due to moisture being absorbed by the POE oil in the system. This type of oil is highly susceptible to moisture absorption.

### **Total system charge determined**

- 1. Determine outdoor unit factory charge from *Tabular Data Sheet*.
- 2. Determine indoor coil adjustment (if any) from Tabular Data Sheet.
- 3. Calculate the additional charge for refrigerant piping using the *Tabular Data Sheet* if line length is greater than 15 ft (4.6 m).
- 4. Total system charge = item 1 + item 2 + item 3.
- 5. The manifold gauge set is already installed on the unit for evacuation and charging. Use these gauges to initially charge the system using system pressures and subcooling. Before charging put the equipment into Service Mode at the outdoor control. The charging information for charging mode is printed on the bottom of the unit data tag. Charging data for cooling and heating mode is found on page 27 of this manual or available in the Service Data Application Guide, available online. For subsequent annual maintenance visits the charge verification display can be used to quickly check overall system condition and the system charge without attaching a separate manifold gauge set or temperature sensors.
- 6. Permanently mark the unit data plate with the total amount of refrigerant in the system.

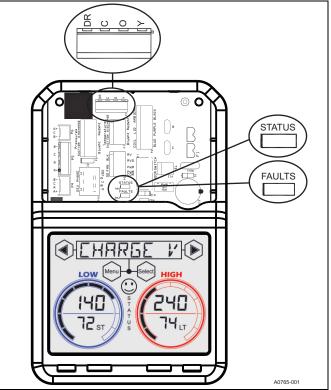



Figure 11: Main outdoor control and display

# **A WARNING**

DO NOT attempt to pump Total System Charge into outdoor unit for maintenance, service, etc. This may cause damage to the compressor and/or other components. Recover and weigh System Charge into an appropriate recovery cylinder for any instances requiring evacuation.

# **A CAUTION**

It is unlawful to knowingly vent, release or discharge refrigerant into the open air during repair, service, maintenance or the final disposal of this unit.

### Charge verification mode

NOTICE

The Hx Touch Screen Thermostat must be set to OFF mode so that Charge Verification mode can be enabled on the Variable Capacity control.

Awake-energize display: If the control senses a navigational response from either the Menu or Select buttons (pressed) greater than 2 s, the control will turn on the outdoor display.

Upon power-up, the display will be on for 60 min by default. If the control does not receive a navigational response for greater than 60 min, the control will turn off the outdoor display.

De-energize the display: If the control senses a navigational response from both the Menu and Select buttons (pressed) at the same time for greater than 5 s, the control will turn off the outdoor display.

If the control does not receive a navigational response for greater than 60 min, the control will turn off the outdoor display.

The outdoor display will assist the installer with charging the system. Through interaction with the Outdoor Display the system will operate at predetermined nominal speed values. During this operation the system will monitor pressures and temperatures. When the subcooling is within the predetermined values, the outdoor display will indicate SYSTEM CHARGE VALIDATED. This mode is only available when the ID temperature is within 73°F to 83°F and humidity is less than 73% as measured by the Hx thermostat. Operation will continue but charge will not be verified.

#### User interaction/operation:

- Set the indoor room thermostat to the OFF position. 1.
- 2. Press Menu, press Arrow until Modes is displayed, press Select. Press Arrow until Charge Verification is displayed, press Select.
- 3. Press Select while in Charge Verification Mode. The system will detect the Unit Type and Unit Tonnage. The outdoor display will update and scroll text, see the example below. Example: 4-TON AC FOUND \* VERIFY CHARGE? \* 4-TON AC FOUND \* VERIFY CHARGE?
- Press Select to verify charge, the outdoor display will update and 4 scroll text, see the example below. Example: VERIFYING CHARGE \* PLEASE WAIT \* VERIFYING CHARGE \* PLEASE WAIT (5 min wait time during initial charge calculation)
- 5. If the system is not within required calculated parameters or it has not yet calculated appropriate charge verification values, the outdoor display shall scroll the below text example.'

Example: ADDITIONAL CALCULATIONS NEEDED \* PLEASE WAIT

(If the display still scrolls the above text Example after 15 min, exit the Charge Verification Mode and charge to the procedure given in TOTAL SYSTEM CHARGE DETERMINED of the installation manual).

ADD CHARGE or REMOVE CHARGE will display on the banner 6. with the appropriate response dependent upon the OEM's predetermined values, user may press Select when the banner displays ADD CHARGE or REMOVE CHARGE. The display will indicate ACCEPTED for 5 s and return to the example defined in Step 1. However, if the system does meet the charge requirements defined by the OEM, the outdoor display will indicate the below text example for 5 s and return to the text example in Step 2 until charge verification has fully completed.

Example: SYSTEM CHARGE VALIDATED

The system repeats Steps 1 to 3 until the subcooling has reached the predetermined values set by the OEM.

Once charge verification is fully complete, the outdoor display 7 returns to the Second Menu Layer.

## Section VIII: System operation

### Service mode

Service mode locks the system into maximum capacity operation based on ambient conditions. The unit will be locked into steady state conditions where operation and performance can be evaluated using the available service information. This function is outside of the charge verification mode, available for all system component diagnostics and can only be access from the outdoor control. Indoor room thermostat MUST be in the OFF position for service mode operation.

### Anti short-cycle delay

The control includes a 5 min anti short-cycle delay (ASCD) timer to prevent the compressor from short-cycling after a power or thermostat signal interruption. The ASCD timer is applied when the control is first powered and immediately following the completion of a compressor run cycle. The compressor and the outdoor fan will not operate during the 5 min that the timer is active.

### Low voltage detection

The control monitors the outdoor transformer secondary (24 VAC) voltage and provides low voltage protection for the heat pump and its components. If the voltage drops below approximately 22 VAC, the control continues to energize any outputs that are already energized. If the voltage drops below approximately 19 VAC, the control immediately deenergizes the outputs and can no longer energize any outputs until the voltage level increases above 22 VAC. The control stores and displays the appropriate fault codes when low voltage conditions occur.

### Test mode operation

Test mode operation provides the features found in Table 3 to assists in unit commissioning and troubleshooting. TEST MODE is accessed through the Outdoor Display. See Table 6 for detailed outdoor display operation. Test mode can only be accessed from the outdoor control.

Table 3: TEST mode option

| TEST mode option                                                                                                                      |           |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Menu options                                                                                                                          | Operation |  |
| OPERATIONAL MODE (AC - HP) Display current system configuration (AC or HP) and unit capacity stored in memory.                        |           |  |
| BYPASS ASCD TIMER Bypass ASCD timer and initiate system operation if a call for space conditioning is present from the Hx thermostat. |           |  |

## Fault and status code behavior

### Fault code storage

The main control stores the ten most recent fault codes for review by the service technician. These codes are stored even when power is removed from the control and remain in memory until the control is powered for 30 consecutive days or manually cleared from the control. All codes are stored in order of occurrence and time stamped.

The control stores only one identical fault code during the same series of events. For example, if two or more high pressure switch (HPS) faults occur sequentially without another fault occurring in between the HPS faults, the control only stores the HPS fault once.

In addition, the main unit control stores the following unit sensor values when a fault or event occurs.

- Suction Superheat
- Liquid Subcooling
- Liquid Temperature
- Discharge Pressure
- Suction Temperature
- Suction Pressure

When a fault or event is present, the system indicates the corresponding fault or event text on the Outdoor Display status banner.

# NOTICE

The display continues to indicate the above fault (saved) values on the Outdoor Display with the active fault or event text, while the fault or event is still present. When the fault or event has cleared, the system returns to the General Display Operation.

### Fault code display

The system provides fault and event text, using the Outdoor Display when CURRENT or STORED SYSTEM FAULTs are selected from the FAULT MODE category. Tables 7 and 8 describe the fault codes in more detail, giving potential causes and troubleshooting actions. If multiple faults and events are present at the same time, the Outdoor Display shows the most recent fault or event with the highest priority. In the event that multiple faults and events are populated at the same time, the Outdoor Display indicates the most recent system fault or event that is stored in memory. The second system fault is not displayed, but is stored in memory. See Table 4.

Table 4: Same priority fault storage

| Control                | Description                              | Time of<br>fault | Fault<br>priority |
|------------------------|------------------------------------------|------------------|-------------------|
| Inverter Control Fault | Microelectronic Fault                    | 10:15:00         | 1                 |
| Outdoor Control Fault  | Inverter Control<br>Communications Fault | 10:15:01         | 1                 |

### Status code display

The main control board contains two LEDs for status and fault display as shown in Figure 11. The control will provide a status code indicating the state of the system using the yellow LED as detailed in Table 5. The red LED indicates a system fault is present. Further details of the fault can be found on the outdoor screen.

### Table 5: Status code display

| Description                                                    | Required condition                                                       | LED                          | Color  |
|----------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|--------|
| No power to control                                            | No power to control                                                      | OFF                          | OFF    |
| Control Failure                                                | Control failure occurs and can be detected.                              | ON                           | Yellow |
| System has 24 VAC present<br>and the microprocessor is active. | No faults active                                                         | 2s ON / 2s OFF ("Heartbeat") | Yellow |
| Control normal operation – in ASCD period                      | No faults/events active, compressor speed > 0, ASCD timer not expired    | 0.1 s ON / 0.1 s OFF         | Yellow |
| System is active and presently communicating successfully.     | No faults/events active, compressor speed<br>> 0, ASCD timer not expired | 0.5 s ON / 0.5 s OFF         | Yellow |

## **Section IX: Outdoor screen operation**

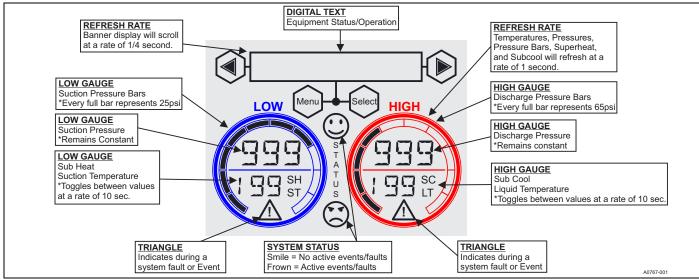



Figure 12: Outdoor display

The system has an advanced screen to assist in unit commissioning and troubleshooting. Operating pressures and temperatures from the system sensors are displayed in a format emulating a set of refrigerant gauges. Full description text is scrolled across a banner display to show current system operation and status. A menu structure for the outdoor display can be found in Table 6 and general operation is detailed in the following pages.

### **General display operation**

#### During an active call 1.

A. Display Current system values:

Value

- COMPRESSOR SPEED (RPM)
- OD FAN SPEED (RPM)
- EEV STEP (ID Status)
- EEV STEP (OD Status)
- ID FAN SPEED (CFM)
- INPUT CURRENT (AMPS) -From Inverter Input
- INPUT VOLTAGE (VOLTS) -From Inverter Input
- INPUT WATTS (WATTS) -From Inverter Input

Equipment Status information will scroll sequentially on a continuous loop, example below.

### Continuous loop example:

COMPRESSOR (RPM) \* OD FAN (RPM) \* EEV STEP (ID EEV) \* EEV STEP (OD EEV) \* ID FAN (CFM) \* INVERTER (APMS)

\* INVERTER (VOLTS) \* INVERTER (WATTS)

No active call, high voltage is applied 2. The control will scroll and display \* STANDBY \* when there are no active calls for compressor operation.

3. If any of the following conditions exists, do not display current values defined in 1-3 in the banner.

The control will indicate ASCD TIMER (ACTIVE) and display it as the highest priority over all of the below defined active modes, if the ASCD Timer is currently active.

- А Will ONLY Display the Active Condition
- ASCD TIMER (ACTIVE)
- -Only present when the ASCD Timer is Active.
- DEMAND RESPONSE (ACTIVE)
- FACTORY RUN TEST (ACTIVE)
- REPAIR HEAT HP (ACTIVE)
- REPAIR COOL HP (ACTIVE)
- REPAIR COOL AC (ACTIVE)
- EMERGENCY HEAT (ACTIVE)
- DEFROST CAL (ACTIVE)
- DEFROST DD (ACTIVE)
- DEFROST TT (ACTIVE) 4.
  - No active call, no high voltage
  - Α. Display is OFF

### Menu navigation

## Time duration response

- a. Tap Menu b. Press Menu 2 s to 5 s
- Back to the second layer string =
- = Back to main layer string
- c. Press Menu > 5 s
- Exit menu layer string and Return = to the General Display Operation

#### Table 6: Outdoor display menu structure

| Main layer       | Second layer         | Third layer                                                                                                                                                                     | Base layer           |  |
|------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
|                  |                      | COMPRESSOR (RPM)                                                                                                                                                                |                      |  |
|                  |                      | OD FAN (RPM)                                                                                                                                                                    |                      |  |
|                  | COMMANDED            | ID EEV (SP)                                                                                                                                                                     |                      |  |
|                  |                      | ID FAN (CFM)                                                                                                                                                                    |                      |  |
|                  |                      | COMPRESSOR (RPM)                                                                                                                                                                |                      |  |
| EQUIPMENT STATUS |                      | OD FAN (RPM)                                                                                                                                                                    |                      |  |
|                  |                      | ID EEV (SP)                                                                                                                                                                     |                      |  |
|                  | CURRENT              | ID FAN (CFM)                                                                                                                                                                    |                      |  |
|                  |                      | INPUT CURRENT (AMPS)                                                                                                                                                            |                      |  |
|                  |                      | INPUT VOLTAGE (VOLTS)                                                                                                                                                           |                      |  |
|                  |                      | INPUT WATTS (WATTS)                                                                                                                                                             |                      |  |
|                  |                      | OFF (Default)                                                                                                                                                                   |                      |  |
|                  | DEMAND RESPONSE      | NORMALY OPEN RELAY                                                                                                                                                              |                      |  |
|                  |                      | NORMALY CLOSED RELAY                                                                                                                                                            |                      |  |
|                  | INVERTER REPAIR PART | System will first determine Unit Type (Reversing Valve Presence) and Unit Tonnage (Inverter Configuration) and will walk the user through the operation, per inverter part num- |                      |  |
| CONFIGURATIONS   |                      | ber.                                                                                                                                                                            |                      |  |
| CONFIGURATIONS   |                      | 2-TON                                                                                                                                                                           |                      |  |
|                  |                      | 3-TON                                                                                                                                                                           |                      |  |
|                  |                      | 4-TON                                                                                                                                                                           |                      |  |
|                  |                      | 5-TON                                                                                                                                                                           |                      |  |
|                  | SOFT JUMPERS         | COMFORT - EFFICIENCY                                                                                                                                                            | EFFICIENCY (Default) |  |
|                  |                      |                                                                                                                                                                                 | COMFORT              |  |
|                  |                      | CURRENT SYSTEM FAULTS                                                                                                                                                           |                      |  |
|                  | FAULT MODE           | STORED SYSTEM FAULTS                                                                                                                                                            |                      |  |
|                  |                      | CLEAR FAULT LOG                                                                                                                                                                 |                      |  |
|                  |                      | BYPASS ASCD TIMER                                                                                                                                                               |                      |  |
| MODES            | TEST MODE            | OPERATIONAL MODE (AC)                                                                                                                                                           |                      |  |
|                  |                      | System will display Unit Type (Reversing Valve Presence) and Unit Tonnage (Inverter Con-<br>figuration)                                                                         |                      |  |
|                  | SERVICE MODE         | COOLING                                                                                                                                                                         |                      |  |
|                  | CHARGE VERIFICATION  | System determines Unit Tonnage (Inverter Configuration) and will walk the user through the operation.                                                                           |                      |  |

### Menu notes:

Discharge Pressure, Liquid Temperature, Suction Pressure, Suction Temperature, Calculated Superheat, and Calculated Subcool. On the high gauge display, the control shall toggle at a rate of 10 s between the Liquid Temperature and the Subcool calculated value. On the low gauge display, the control shall toggle at a rate of 10 s between the Suction Temperature and the Superheat calculated value.

**Time out period:** While in the Menu Structure if the display does not sense a navigational response within 5 min, the outdoor display will return to General Display Operation.

**Saved configuration/selection:** The system will save all individual configuration selections made on the Outdoor Display. Upon returning to a previously saved configuration the system shall display the previously saved configuration settings. Not the Default settings, unless the saved selection was in fact the default selection.

**Operational mode:** The system will display (Inverter profile and reversing valve dependent) unit tonnage when the user selects Operational Mode (AC).

## Fault/status code outdoor system trouble shooting

Table 7: Outdoor control faults/status code display

| Outdoor control description                                                                             | LED <sup>1</sup> | Outdoor<br>display text                    | Possible<br>causes                                                   | Solution                                                                                                                                                     | Left triangle<br>indication<br>(OD screen) | Right triangle<br>indication<br>(OD screen) |
|---------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|
| Operational faults                                                                                      |                  |                                            |                                                                      |                                                                                                                                                              |                                            |                                             |
|                                                                                                         |                  |                                            | Reduced or no<br>OD airflow                                          | Verify outdoor coil is clean.<br>Verify fan is functioning. Verify<br>there is airflow through the coil.                                                     |                                            |                                             |
|                                                                                                         |                  |                                            | Reduced or no<br>OD airflow due to<br>motor limits                   | Check motor current against limits.<br>Check input voltage to<br>ensure within range.                                                                        |                                            |                                             |
|                                                                                                         |                  |                                            | OD air temp<br>out of range.                                         | Verify the outdoor ambient<br>temperature is within the<br>range listed in the IOM.                                                                          |                                            |                                             |
| High-pressure<br>switch fault<br>(not in lockout yet)                                                   | RED<br>(Solid)   | HPS – OPEN                                 | Pressure switch<br>is disconnected<br>from OD unit<br>control board. | Check high pressure switch connection on the outdoor board.                                                                                                  | _                                          | x                                           |
|                                                                                                         |                  |                                            | Pressure switch faulty.                                              | Ohm out the switch to confirm<br>continuity when the system<br>pressure is below 650 PSIG.                                                                   |                                            |                                             |
|                                                                                                         |                  |                                            | Faulty EEV or<br>restriction                                         | Check EEV operation as<br>superheat or<br>subcooling is high.                                                                                                |                                            |                                             |
|                                                                                                         |                  |                                            | System<br>overcharged.                                               | Verify the system has the correct<br>amount of refrigerant charge.<br>Refer to the tables from the<br>product technical guide.                               |                                            |                                             |
| System in high-pressure<br>switch lockout (last<br>mode of operation was<br>normal compressor)          | RED<br>(Solid)   | HPS SOFT<br>LOCKOUT – NORMAL               | See HPS fault See HPS fault                                          |                                                                                                                                                              | _                                          | х                                           |
| System in high-pressure<br>switch lockout (last<br>mode of operation was<br>normal compressor)          | RED<br>(Solid)   | HPS HARD<br>LOCKOUT – NORMAL               | See HPS fault See HPS fault                                          |                                                                                                                                                              | _                                          | х                                           |
|                                                                                                         |                  |                                            |                                                                      | Check input power supply wires.                                                                                                                              |                                            |                                             |
| Low Voltage<br>(<19 VAC)                                                                                | RED<br>(Solid)   | LOW VOLTAGE –<br>BELOW 19 VAC              | Under Voltage                                                        | Check input power supply and<br>24 VAC circuit before and during<br>operation to verify voltage is<br>within range given in manual<br>(197-252 VAC and >19). | _                                          | -                                           |
|                                                                                                         |                  |                                            |                                                                      | Check 24 VAC transformer<br>tap for correct input power<br>supply voltage selection.                                                                         |                                            |                                             |
|                                                                                                         |                  |                                            | Bad wiring                                                           | Check wiring from<br>OD control to Inverter.                                                                                                                 |                                            |                                             |
| Inverter Control<br>Communications<br>Fault                                                             | RED<br>(Solid)   | COMMUNICATIONS<br>LOST –<br>INVERTER DRIVE | Damaged OD<br>Control Board                                          | Remove power to system for<br>2 min. Reapply power.<br>If problem remains, replace<br>OD Control Board.                                                      | _                                          | -                                           |
|                                                                                                         |                  |                                            | Damaged<br>Inverter Board                                            | Remove power to system for<br>2 min. Reapply power.<br>If problem remains, replace drive.                                                                    |                                            |                                             |
| JCI RS-485                                                                                              | RED              | COMMUNICATIONS                             | Bad wiring                                                           | Check wiring from OD to ID unit as well as to thermostat.                                                                                                    |                                            | _                                           |
| Communications<br>Lost                                                                                  | (Solid)          | LOST –<br>SYSTEM MASTER                    | System out of phase.                                                 | Check ground and phasing on the low and high voltage side.                                                                                                   |                                            |                                             |
| Repair part tonnage<br>selection does not<br>match the stored value<br>programmed in the<br>JCI factory | RED<br>(Solid)   | INVERTER<br>CONFIGURATION<br>ERROR         | Correct model<br>number of drive<br>not installed                    | Verify the replacement part<br>model number with the list<br>supplied by Source-1.                                                                           | _                                          | _                                           |

Table 7: Outdoor control faults/status code display (Continued)

| Outdoor control description                                                          | LED <sup>1</sup> | Outdoor<br>display text                                                                 | Possible<br>causes                                                      | Solution                                                             | Left triangle<br>indication<br>(OD screen) | Right triangle<br>indication<br>(OD screen) |
|--------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|
| Inverter Model Number<br>installed does not<br>match the stored<br>tonnage in EEPROM | RED<br>(Solid)   | I DUMDER OF DEVICE I MODEL DUMDER WITH THE LIST                                         |                                                                         | -                                                                    |                                            |                                             |
| Required sensor or swit                                                              | ch faults        |                                                                                         |                                                                         |                                                                      |                                            |                                             |
|                                                                                      |                  | OUTDOOR AMBIENT                                                                         | Bad thermistor                                                          | Check temperature vs. resistance curve per Table 9.                  |                                            |                                             |
|                                                                                      |                  | SENSOR - SHORT -<br>SOFT LOCKOUT                                                        | Bad wiring leads                                                        | Check wiring lead from<br>sensor to board.                           | _                                          | _                                           |
| Outdoor ambient                                                                      | RED              |                                                                                         | Bad main OD control board.                                              | If leads and sensor are fine, board is bad and needs to be replaced. |                                            |                                             |
| sensor failure (short)                                                               | (Solid)          | OUTDOOR AMBIENT                                                                         | Bad thermistor                                                          | Check temperature vs resistance curve per Table 9.                   |                                            |                                             |
|                                                                                      |                  | SENSOR - SHORT -<br>HARD LOCKOUT                                                        | Bad wiring leads                                                        | Check wiring lead from sensor to board.                              | _                                          | -                                           |
|                                                                                      |                  |                                                                                         | Bad main OD control board.                                              | If leads and sensor are fine, board is bad and needs to be replaced. |                                            |                                             |
| Outdoor ambient                                                                      | RED              | OUTDOOR AMBIENT<br>SENSOR – OPEN –<br>SOFT LOCKOUT                                      | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | _                                          | _                                           |
| sensor failure (open)                                                                | (Solid)          | OUTDOOR AMBIENT<br>SENSOR – OPEN –<br>HARD LOCKOUT                                      | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | _                                          | _                                           |
| Coil sensor failure<br>(short) not in lockout yet                                    | RED<br>(Solid)   | COIL TEMP<br>SENSOR – SHORT                                                             | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | _                                          | х                                           |
| Coil sensor                                                                          | RED<br>(Solid)   | COIL TEMP<br>SENSOR – SHORT –<br>SOFT LOCKOUT                                           | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | _                                          | х                                           |
| failure (short)                                                                      |                  | COIL TEMP<br>SENSOR – SHORT –<br>HARD LOCKOUT                                           | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | -                                          | х                                           |
| Coil sensor failure<br>(open) not in lockout yet                                     | RED<br>(Solid)   | COIL TEMP<br>SENSOR – OPEN                                                              | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | _                                          | х                                           |
| Coil sensor failure (open)                                                           | RED              | COIL TEMP<br>SENSOR – OPEN –<br>SOFT LOCKOUT                                            | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | _                                          | х                                           |
| Con sensor failure (open)                                                            | (Solid)          | COIL TEMP<br>SENSOR – OPEN –<br>HARD LOCKOUT                                            | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | _                                          | х                                           |
| Liquid line temperature<br>sensor failure (short)<br>not in lockout yet              | RED<br>(Solid)   | LIQUID TEMP<br>SENSOR – SHORT                                                           | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | -                                          | х                                           |
| Liquid line temperature sensor failure (short)                                       | RED<br>(Solid)   | LIQUID TEMP<br>SENSOR – SHORT –<br>SOFT LOCKOUT                                         | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | -                                          | х                                           |
| Liquid line temperature<br>sensor failure (open)<br>not in lockout yet               | RED<br>(Solid)   | LIQUID TEMP<br>SENSOR – OPEN                                                            | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | -                                          | х                                           |
| Liquid line temperature sensor failure (open)                                        | RED<br>(Solid)   | LIQUID TEMP<br>SENSOR – OPEN –<br>SOFT LOCKOUT                                          | SENSOR – OPEN – See Ambient Sensor failure. See Ambient Sensor failure. |                                                                      | -                                          | х                                           |
| Discharge temperature sensor failure (short)                                         | RED<br>(Solid)   | DISCHARGE TEMP<br>SENSOR – SHORT                                                        | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | -                                          | х                                           |
| Discharge temperature<br>sensor failure (open)<br>not in lockout yet                 | RED<br>(Solid)   | DISCHARGE TEMP See Ambient<br>SENSOR – OPEN Sensor failure. See Ambient Sensor failure. |                                                                         | -                                                                    | х                                          |                                             |
| Discharge temperature sensor failure (open)                                          | RED<br>(Solid)   | DISCHARGE TEMP<br>SENSOR – OPEN –<br>SOFT LOCKOUT                                       | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | _                                          | х                                           |
| Suction temperature<br>sensor failure (short)<br>not in lockout yet                  | RED<br>(Solid)   | SUCTION TEMP<br>SENSOR – SHORT                                                          | See Ambient<br>Sensor failure.                                          | See Ambient Sensor failure.                                          | x                                          | _                                           |

Table 7: Outdoor control faults/status code display (Continued)

| Outdoor control description                                                  | LED <sup>1</sup> | OutdoorPossibleSolutiondisplay textcausesSolution                |                                                                                | Left triangle<br>indication<br>(OD screen)                                                                                                                             | Right triangle<br>indication<br>(OD screen) |   |
|------------------------------------------------------------------------------|------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---|
| Suction temperature sensor failure (short)                                   | RED<br>(Solid)   | SUCTION TEMP<br>SENSOR – SHORT –<br>SOFT LOCKOUT                 | See Ambient<br>Sensor failure.                                                 | See Ambient Sensor failure.                                                                                                                                            | x                                           |   |
| Suction temperature<br>sensor failure (open)<br>not in lockout yet           | RED<br>(Solid)   | SUCTION TEMP<br>SENSOR – OPEN                                    | See Ambient<br>Sensor failure.                                                 | See Ambient Sensor failure.                                                                                                                                            | х                                           | _ |
| Suction temperature sensor failure (open)                                    | RED<br>(Solid)   | SUCTION TEMP<br>SENSOR – OPEN –<br>SOFT LOCKOUT                  | See Ambient<br>Sensor failure.                                                 | See Ambient Sensor failure.                                                                                                                                            | х                                           | _ |
|                                                                              |                  |                                                                  | Bad wiring<br>harness                                                          | Check harness for continuity.                                                                                                                                          |                                             |   |
|                                                                              |                  |                                                                  | Bad OD control board                                                           | If supply voltage across BLK and<br>RED/WHT does not read 4.5-5.5<br>VDC replace OD control board.                                                                     |                                             |   |
| Discharge pressure<br>sensor failure<br>(low voltage) not in<br>lockout yet  | RED<br>(Solid)   | DISCHARGE<br>PRESSURE SENSOR –<br>LOW VOLTAGE                    | Bad transducer                                                                 | If voltage across BLK and RED/WHT<br>is within a tolerance of 4.5-5.5 VDC<br>and the voltage across WHT and<br>BLK doesn't read between<br>0.5-4.5 VDC replace sensor. | _                                           | х |
|                                                                              |                  |                                                                  | Bad OD<br>control board                                                        | If voltage across WHT and BLK<br>reads between 0.5-4.5 VDC but fault<br>still exists, replace OD control board.                                                        |                                             |   |
| Discharge pressure<br>sensor failure<br>(low voltage)                        | RED<br>(Solid)   | DISCHARGE<br>PRESSURE SENSOR –<br>LOW VOLTAGE –<br>SOFT LOCKOUT  | See Discharge<br>Pressure<br>Sensor Fault                                      | See Discharge<br>Pressure Sensor Fault                                                                                                                                 | _                                           | х |
| Discharge pressure<br>sensor failure<br>(high voltage) not<br>in lockout yet | RED<br>(Solid)   | DISCHARGE<br>PRESSURE SENSOR –<br>HIGH VOLTAGE                   | See Discharge<br>Pressure<br>Sensor Fault                                      | See Discharge<br>Pressure Sensor Fault                                                                                                                                 | _                                           | х |
| Discharge pressure<br>sensor failure<br>(high voltage)                       | RED<br>(Solid)   | DISCHARGE<br>PRESSURE SENSOR –<br>HIGH VOLTAGE –<br>SOFT LOCKOUT | E SENSOR – See Discharge See Discharge Pressure Pressure Pressure Sensor Fault |                                                                                                                                                                        | _                                           | х |
|                                                                              |                  |                                                                  | Bad wiring<br>harness                                                          | Check harness for continuity.                                                                                                                                          |                                             |   |
|                                                                              |                  | SUCTION PRESSURE                                                 | Bad OD control board                                                           | If supply voltage across BLK and<br>BLU/WHT doesn't read 4.5-5.5 VDC<br>replace OD control board.                                                                      |                                             |   |
| Suction pressure<br>sensor failure<br>(low voltage)                          | RED<br>(Solid)   | SENSOR –<br>LOW VOLTAGE –<br>SOFT LOCKOUT                        | Bad transducer                                                                 | If voltage across BLK and BLU/WHT<br>is within a tolerance of 4.5-5.5 VDC<br>and the voltage across WHT and<br>BLK doesn't read between<br>0.5-4.5 VDC replace sensor. | x                                           | - |
|                                                                              |                  |                                                                  | Bad OD control board                                                           | If voltage across WHT and BLK<br>reads between 0.5-4.5 VDC but fault<br>still exists, replace OD control board.                                                        |                                             |   |
|                                                                              |                  |                                                                  | Bad wiring<br>harness                                                          | Check harness for continuity.                                                                                                                                          |                                             |   |
|                                                                              |                  |                                                                  | Bad OD<br>control board                                                        | If supply voltage across BLK and<br>BLU/WHT doesn't read 4.5-5.5 VDC<br>replace OD control board.                                                                      |                                             |   |
| Suction pressure<br>sensor failure<br>(high voltage)                         | RED<br>(Solid)   | SUCTION PRESSURE<br>SENSOR –<br>HIGH VOLTAGE –<br>SOFT LOCKOUT   | Bad transducer                                                                 | If voltage across BLK and BLU/WHT<br>is within a tolerance of 4.5-5.5<br>VDC and the voltage across WHT<br>and BLK doesn't read between<br>0.5-4.5 VDC replace sensor. | x                                           | - |
|                                                                              |                  |                                                                  | Bad OD control board                                                           | If voltage across WHT and BLK<br>reads between 0.5-4.5 VDC but fault<br>still exists, replace OD control board.                                                        |                                             |   |

| Outdoor control description LED <sup>1</sup> |                | Outdoor<br>display text                   | Possible<br>causes                        | Solution                                                                                                           | Left triangle<br>indication<br>(OD screen) | Right triangle<br>indication<br>(OD screen) |
|----------------------------------------------|----------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|
| Discharge temp faults                        |                |                                           |                                           |                                                                                                                    |                                            |                                             |
|                                              |                |                                           | Insufficient<br>charge                    | Check refrigerant charge                                                                                           |                                            |                                             |
| High discharge<br>temperature (not in        | RED            | HIGH DISCHARGE                            | Faulty sensor                             | Check discharge sensor with proce-<br>dure found in<br>discharge sensor faults.                                    |                                            |                                             |
| lockout yet)                                 | (Solid)        | TEMP                                      | Faulty EEV or<br>restriction              | Check EEV operation as<br>superheat will be high.                                                                  | _                                          | Х                                           |
|                                              |                |                                           | ID and OD<br>temperature<br>out of range. | Bring the temperature within design<br>parameters found in the IOM.                                                |                                            |                                             |
| High discharge<br>temperature                | RED<br>(Solid) | HIGH DISCHARGE<br>TEMP –<br>SOFT LOCKOUT  | See High<br>Discharge Temp.               | See High Discharge Temp.                                                                                           | _                                          | х                                           |
| High discharge<br>temperature                | RED<br>(Solid) | HIGH DISCHARGE<br>TEMP –<br>HARD LOCKOUT  | See High<br>Discharge Temp.               | See High Discharge Temp.                                                                                           | _                                          | х                                           |
| Suction pressure faults                      | 5              |                                           |                                           |                                                                                                                    |                                            |                                             |
|                                              |                | LOW SUCTION                               | Reduced or no<br>ID airflow               | Check for dirty filter -<br>clean or replace                                                                       | ×                                          |                                             |
|                                              |                |                                           |                                           | Check blower motor operation<br>and airflow restrictions.                                                          |                                            |                                             |
|                                              |                |                                           |                                           | Dirty ID coil.                                                                                                     |                                            |                                             |
|                                              |                |                                           |                                           | External static is too high -<br>correct duct work.                                                                |                                            |                                             |
| Low suction pressure (not in                 | RED            |                                           | ID air temp<br>out of range.              | Verify the ID ambient temperature<br>is with the range listed in the<br>IOM/design parameters.                     |                                            |                                             |
| lockout yet)                                 | (Solid)        | PRESSURE                                  | Reduced or no                             | Check motor current against limits.                                                                                | ^                                          | _                                           |
|                                              |                |                                           | ID airflow due to motor limits.           | Check input voltage to<br>ensure within range.                                                                     | ]                                          |                                             |
|                                              |                |                                           | Insufficient<br>charge                    | Check refrigerant charge<br>compared to tech service guide.                                                        |                                            |                                             |
|                                              |                |                                           | Faulty suction<br>transducer              | Check transducer                                                                                                   |                                            |                                             |
|                                              |                |                                           | Restriction<br>after the EEV              | Check for temperature drop at various<br>section along the refrigerant circuit,<br>i.e., across filter drier, etc. | 5                                          |                                             |
| Low suction pressure                         | RED<br>(Solid) | LOW SUCTION<br>PRESSURE –<br>SOFT LOCKOUT | See Low Suction<br>Pressure               | See Low Suction Pressure                                                                                           | х                                          | _                                           |
| Low suction pressure                         | RED<br>(Solid) | LOW SUCTION<br>PRESSURE –<br>HARD LOCKOUT | See Low Suction<br>Pressure               | See Low Suction Pressure                                                                                           | х                                          | -                                           |

1. Refer to Figure 11 for Outdoor Control LED location.

Table 8: Inverter drive fault/status code display

| Inverter drive<br>description                   | LED <sup>1</sup> | Blink<br>codes | OD display text                                          | Possible<br>causes                                    | Solution                                                                                                                                                |               |               |               |               |               |    |               |                         |                                                                                                     |
|-------------------------------------------------|------------------|----------------|----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|----|---------------|-------------------------|-----------------------------------------------------------------------------------------------------|
| nverter - faults                                | •                |                |                                                          | •                                                     |                                                                                                                                                         |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 |                  |                |                                                          | Loose or incorrect<br>wire connections                | Check lead to the compressor<br>plug and at inverter drive.<br>W: Black Wire (BLK).<br>V: Red Wire (RED).<br>U: Brown Wire (BRN).                       |               |               |               |               |               |    |               |                         |                                                                                                     |
| C+B6:H16<br>Compressor<br>Phase Over Current    | LED604 / LED2    | 1 or 3         | COMPRESSOR<br>PHASE OVER CURRENT –<br>INVERTER DRIVE     | Phase imbalance or shorted compressor windings.       | Check compressor winding resistance<br>at the compressor terminals.<br>2 ton - 0.681 Ohm<br>3 ton - 0.203 Ohm<br>4 ton - 0.203 Ohm<br>5 ton - 0.203 Ohm |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 |                  |                |                                                          | High compressor load.                                 | Verify system is within operating<br>conditions as outlined in IOM.                                                                                     |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 |                  |                |                                                          | High compressor load<br>caused by<br>internal damage. | Check compressor and if all looks normal and<br>problems still persist when all other solutions<br>have been vetted, replace compressor.                |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 | LED 603 / LED3   | 4              |                                                          | Sensor on drive not<br>reading properly               | Replace drive.                                                                                                                                          |               |               |               |               |               |    |               |                         |                                                                                                     |
| Compressor Phase<br>Current Foldback<br>Timeout | LED604 / LED2    | 16             | COMPRESSOR PHASE<br>CURRENT FOLDBACK –<br>INVERTER DRIVE | See Compressor<br>Phase Over Current.                 | See Compressor Phase Over Current.                                                                                                                      |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 |                  | 11             |                                                          | Reduced input voltage                                 | Check the line voltage if it is < 187 VAC.                                                                                                              |               |               |               |               |               |    |               |                         |                                                                                                     |
| AC Input<br>Over Current                        | LED604 / LED2    | LED604 / LED2  | LED604 / LED2                                            | LED604 / LED2                                         | _ED604 / LED2                                                                                                                                           | LED604 / LED2 | LED604 / LED2 | _ED604 / LED2 | .ED604 / LED2 | .ED604 / LED2 | 14 | AC INPUT OVER | Distorted input voltage | Check the line voltage for noise.<br>Call an electrician or the power<br>company if noise is found. |
| Over Current                                    |                  | 15             | CURRENT –<br>INVERTER DRIVE                              | High compressor load.                                 | Check the compressor is operating<br>with in specified limits.                                                                                          |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 |                  |                |                                                          | Drive component issue.                                | Replace drive.                                                                                                                                          |               |               |               |               |               |    |               |                         |                                                                                                     |
| AC Input Current<br>Sampling Fault              | LED 603 / LED3   | 5              |                                                          | Sensor on drive not<br>reading properly.              | Replace drive.                                                                                                                                          |               |               |               |               |               |    |               |                         |                                                                                                     |
| DC Bus                                          |                  | 7              | DC BUS OVER<br>VOLTAGE –<br>INVERTER DRIVE               | High input voltage                                    | Check the DC bus voltage if it is<br>> 385 VDC. Use bus voltage terminals<br>found in Figures 13-15.                                                    |               |               |               |               |               |    |               |                         |                                                                                                     |
| Over Voltage                                    | LED604 / LED2    | 7              |                                                          |                                                       | Check the line voltage if it is > 265 VAC.<br>(If high, contact utility provider.)                                                                      |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 |                  |                |                                                          | Damaged Inverter Board                                | Replace drive.                                                                                                                                          |               |               |               |               |               |    |               |                         |                                                                                                     |
| 20.2                                            |                  |                | DC BUS UNDER                                             |                                                       | Check the DC bus voltage if it is < 385 VDC. Use<br>bus voltage terminals found in Figures 13-15.                                                       |               |               |               |               |               |    |               |                         |                                                                                                     |
| DC Bus<br>Under Voltage                         | LED604 / LED2    | 8              | VOLTAGE –<br>INVERTER DRIVE                              | Low input voltage                                     | Check the line voltage if it is < 187 VAC.<br>(If low, contact utility provider.)                                                                       |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 |                  |                |                                                          | Damaged Inverter Board                                | Replace drive.                                                                                                                                          |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 |                  |                | AC INPUT OVER                                            | High input voltage                                    | Check the line voltage if it is > 265VAC.<br>(If high, contact utility provider.)                                                                       |               |               |               |               |               |    |               |                         |                                                                                                     |
| AC Input<br>Over Voltage                        | LED604 / LED2    | 10             | VOLTAGE –<br>INVERTER DRIVE                              | High input voltage                                    | Check the DC bus voltage if it is > 385 VDC. Use<br>bus voltage terminals found in Figures 13-15.                                                       |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 |                  |                |                                                          | Damaged Inverter Board                                | Replace drive.                                                                                                                                          |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 |                  |                | AC INPUT UNDER                                           | Low input voltage                                     | Check the line voltage if it is < 187 VAC.<br>(If low, contact utility provider.)                                                                       |               |               |               |               |               |    |               |                         |                                                                                                     |
| AC Input<br>Under Voltage                       | LED604 / LED2    | 9              | VOLTAGE –<br>INVERTER DRIVE                              |                                                       | Check the DC bus voltage if it is < 385 VDC. Use<br>bus voltage terminals found in Figures 13-15.                                                       |               |               |               |               |               |    |               |                         |                                                                                                     |
|                                                 |                  |                |                                                          | Damaged Inverter Board                                | Replace drive.                                                                                                                                          |               |               |               |               |               |    |               |                         |                                                                                                     |
| Power Module                                    | LED604 / LED2    | 4              |                                                          | Outdoor airflow is too low or off.                    | Verify proper airflow over the drive heat sink.                                                                                                         |               |               |               |               |               |    |               |                         |                                                                                                     |
| Over Temp                                       |                  | 4              | OVER TEMP –<br>INVERTER DRIVE                            | Inverter component damage.                            | Replace drive.                                                                                                                                          |               |               |               |               |               |    |               |                         |                                                                                                     |
| PFC-IGBT                                        | LED604 / LED2    | 5              | PFC-IGBT OVER TEMP -                                     | Outdoor airflow is too low or off.                    | Verify proper airflow over the drive heat sink.                                                                                                         |               |               |               |               |               |    |               |                         |                                                                                                     |
| Over Temp                                       | LEDUU4 / LEDZ    | 5              | INVERTER DRIVE                                           | Inverter component damage.                            | Replace drive.                                                                                                                                          |               |               |               |               |               |    |               |                         |                                                                                                     |

Table 8: Inverter drive fault/status code display (Continued)

| Inverter drive<br>description                    | LED <sup>1</sup> | Blink<br>codes | OD display text                                              | Possible<br>causes                                           | Solution                                                                                                                                                |
|--------------------------------------------------|------------------|----------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                  |                |                                                              | Loose or incorrect<br>wire connections                       | Check lead to the compressor plug<br>and at inverter drive.<br>W: Red Wire (RED).<br>V: Black Wire (BLK).<br>U: Brown Wire (BRN).                       |
| Lost Rotor<br>Position                           | LED604 / LED2    | 2              | LOST ROTOR POSITION –<br>INVERTER DRIVE                      | Phase imbalance or<br>shorted compressor<br>windings.        | Check compressor winding resistance<br>at the compressor terminals.<br>2 ton - 0.681 Ohm<br>3 ton - 0.203 Ohm<br>4 ton - 0.203 Ohm<br>5 ton - 0.203 Ohm |
|                                                  |                  |                |                                                              | Inverter component damage.                                   | Replace drive.                                                                                                                                          |
|                                                  |                  |                |                                                              | Internal compressor<br>damage.                               | Replace compressor.                                                                                                                                     |
|                                                  |                  |                |                                                              | Loose or incorrect<br>wire connections                       | Check lead to the compressor plug<br>and at inverter drive.<br>W: Black Wire (BLK).<br>V: Red Wire (RED).<br>U: Brown Wire (BRN).                       |
| Compressor Phase<br>Current Imbalance            |                  | 14             | COMPRESSOR PHASE<br>14 CURRENT IMBALANCE –<br>INVERTER DRIVE | Phase imbalance or<br>shorted compressor<br>windings         | Check compressor winding resistance<br>at the compressor terminals.<br>2 ton - 0.681 Ohm<br>3 ton - 0.203 Ohm<br>4 ton - 0.203 Ohm<br>5 ton - 0.203 Ohm |
|                                                  |                  |                |                                                              | Inverter component damage.                                   | Replace drive.                                                                                                                                          |
|                                                  |                  |                |                                                              | Internal compressor<br>damage.                               | Replace compressor.                                                                                                                                     |
| Microelectronic<br>Fault                         | LED 603 / LED3   | 13             | MICROELECTRONIC<br>FAULT –                                   | Digital Signal<br>Processor self-check.                      | Remove power to drive for 2 min. Reapply<br>power. If problem remains, replace drive.                                                                   |
| EEPROM Fault                                     | LED 603 / LED3   | 12             | INVERTER DRIVE                                               | Digital Signal<br>Processor self-check.                      | Remove power to drive for 2 min. Reapply<br>power. If problem remains, replace drive.                                                                   |
| Power Module Temp<br>Low or Sensor<br>Open Fault | LED 603 / LED3   | 2              | POWER MODULE TEMP<br>LOW / SENSOR OPEN –<br>INVERTER DRIVE   | Temperature<br>sensor on the drive<br>is potentially faulty. | Remove power to drive for 2 min. Reapply power. If problem remains, replace drive.                                                                      |
| DC Bus                                           | LED604 / LED2    | 17             | NA                                                           | Low input voltage                                            | Check the DC bus voltage if it is < 385 VDC. Use<br>bus voltage terminals found in Figures 13-15.<br>Check the line voltage if it is < 187 VAC.         |
| Under Voltage                                    |                  |                |                                                              | Damaged Inverter Board                                       | (If low, contact utility provider.)<br>Replace drive.                                                                                                   |
|                                                  |                  |                |                                                              | Reduced input voltage                                        | Check the line voltage if it is < 187 VAC.                                                                                                              |
|                                                  |                  |                | AC INPUT CURRENT                                             | Distorted input voltage                                      | Check the line voltage for noise.<br>Call an electrician or the power<br>company if noise is found.                                                     |
| AC Input Current<br>Foldback Timeout             | LED 603 / LED3   | 15             | FOLDBACK –<br>INVERTER DRIVE                                 | High compressor load.                                        | Check the compressor is operating<br>with in specified limits.                                                                                          |
|                                                  |                  |                |                                                              | Drive component issue.                                       | Replace drive.                                                                                                                                          |
|                                                  |                  |                |                                                              | Sensor on drive not<br>reading properly.                     | Replace drive.                                                                                                                                          |
| Modbus<br>Communication Lost                     |                  |                |                                                              | Loose or<br>disconnected<br>communication<br>harness.        | Validate harness connection.                                                                                                                            |
|                                                  | LED 603 / LED3   | 11             | MODBUS COMM LOST –<br>INVERTER DRIVE                         | Broken or damaged<br>communication<br>harness.               | Check continuity of harness wires. If an problem is found, replace communication harness.                                                               |
|                                                  |                  |                |                                                              | Damaged OD<br>Control Board                                  | Remove power to system for 2 min.<br>Reapply power. If problem remains,<br>replace OD Control Board.                                                    |
|                                                  |                  |                |                                                              | Damaged<br>Inverter Board                                    | Remove power to drive for 2 min. Reapply<br>power. If problem remains, replace drive.                                                                   |

Table 8: Inverter drive fault/status code display (Continued)

| Inverter drive<br>description                          | LED <sup>1</sup> | Blink<br>codes | OD display text                                             | Possible<br>causes                                                    | Solution                                                                                                                                                                             |
|--------------------------------------------------------|------------------|----------------|-------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Module                                           | LED604 / LED2    | 18             | POWER MODULE HIGH<br>TEMP –                                 | Outdoor airflow is too low or off.                                    | Verify proper airflow over the drive heat sink.                                                                                                                                      |
| Temp High                                              | LED0047 LED2     | 10             | INVERTER DRIVE                                              | Inverter component damage.                                            | Replace drive.                                                                                                                                                                       |
| PFC-IGBT                                               | LED604 / LED2    | 19             | PFC-IGBT HIGH TEMP –                                        | Outdoor airflow is too low or off.                                    | Verify proper airflow over the drive heat sink.                                                                                                                                      |
| High Temp                                              |                  | 10             | INVERTER DRIVE                                              | Inverter component damage.                                            | Replace drive.                                                                                                                                                                       |
|                                                        |                  |                |                                                             | Loose or disconnected communication harness.                          | Validate harness connection.                                                                                                                                                         |
| PFC MCU and DSP                                        |                  | -              | PFC MCU /                                                   | Broken or damaged communication harness.                              | Check continuity of harness wires. If an problem<br>is found, replace communication harness.                                                                                         |
| Communication Lost                                     | LED 603          | 9              | DSP COMM ERROR –<br>INVERTER DRIVE                          | Damaged OD<br>Control Board                                           | Remove power to drive for 2 min.<br>Reapply power if problem remains,<br>replace OD Control Board.                                                                                   |
|                                                        |                  |                |                                                             | Damaged<br>Inverter Board                                             | Remove power to drive for 2 min. Reapply<br>power. If problem remains, replace drive.                                                                                                |
|                                                        |                  |                |                                                             | Loose or disconnected communication harness.                          | Validate harness connection.                                                                                                                                                         |
| COM MCU and DSP                                        |                  |                | COM MCU / DSP                                               | Broken or damaged communication harness.                              | Check continuity of harness wires. If an problem<br>is found, replace communication harness.                                                                                         |
| Communication Lost                                     | LED 603          | 8              | COMM ERROR –<br>INVERTER DRIVE                              | Damaged OD<br>Control Board                                           | Remove power to drive for 2 min.<br>Reapply power. If problem remains,<br>replace OD Control Board.                                                                                  |
|                                                        |                  |                |                                                             | Damaged<br>Inverter Board                                             | Remove power to drive for 2 min. Reapply<br>power. If problem remains, replace drive.                                                                                                |
| PFC-IGBT Temp Low<br>or Sensor Open Fault              | LED 603          | 1              | PFC-IGBT LOW TEMP /<br>SENSOR OPEN –<br>INVERTER DRIVE      | Temperature sensor on<br>the drive is<br>potentially faulty.          | Remove power to drive for 2 min. Reapply power. If problem remains, replace drive.                                                                                                   |
| Power Module Temp.                                     | LED604 / LED2    | 21             |                                                             | Outdoor airflow is too<br>low or off.                                 | Verify proper airflow over the drive heat sink.                                                                                                                                      |
| Foldback Timeout                                       | LED004 / LED2    | 21             | TEMP FOLDBACK –<br>INVERTER DRIVE                           | Inverter component damage.                                            | Replace drive.                                                                                                                                                                       |
| Compressor Model<br>Configuration Error                | LED 604 / LED2   | 22             | COMPRESSOR MODEL<br>CONFIGURATION ERROR –<br>INVERTER DRIVE | Compressor model<br>and configuration<br>code do not match.           | Check system configuration and select<br>proper system tonnage in repair part menu.<br>If proper option is not available the correct<br>drive has not been installed, replace drive. |
| High Pressure<br>Sensor Type<br>Configuration Error    | LED 604 / LED2   | 23             | HPS CONFIGURATION<br>ERROR –<br>INVERTER DRIVE              | Pressure sensor and<br>configuration code<br>do not match.            | Check system configuration and select<br>proper system tonnage in repair part menu.<br>If proper option is not available the correct<br>drive has not been installed, replace drive. |
| DLT Low Temp<br>or Open                                | LED 603 / LED3   | 3              | DLT CONFIGURATION<br>ERROR –<br>INVERTER DRIVE              | System configuration<br>not set properly.                             | Check system configuration and select<br>proper system tonnage in repair part menu.<br>If proper option is not available the correct<br>drive has not been installed, replace drive. |
| AC Input Voltage<br>Sampling Fault                     | LED 603 / LED3   | 6              | NA                                                          | Sensor on drive<br>not reading properly.                              | Remove power to drive for 2 min. Reapply<br>power. If problem remains, replace drive.                                                                                                |
| DC BUS Voltage<br>Sampling Fault                       | LED 603 / LED3   | 7              | NA                                                          | Sensor on drive<br>not reading properly.                              | Remove power to drive for 2 min. Reapply<br>power. If problem remains, replace drive.                                                                                                |
| Auto Configuration<br>Communication<br>Fault Timeout   | LED 603 / LED3   | 17             | NA                                                          | Baud rate or parity of the system controller not matching with drive. | Remove power to drive for 2 min. Reapply power. If problem remains, replace drive.                                                                                                   |
| Compressor AA5<br>Phase Over Current<br>(Intermediate) | LED 2            | 27             | NA                                                          | NA                                                                    | NA                                                                                                                                                                                   |
| Board Temp High                                        | LED 2            | 26             | NA                                                          | Outdoor airflow is too<br>low or off.                                 | Verify proper airflow over the drive heat sink.                                                                                                                                      |
| Doard remp migh                                        |                  | 20             |                                                             | Inverter component damage.                                            | Replace drive.                                                                                                                                                                       |

1. Refer to Figures 13 to 15 for LED inverter drive locations.

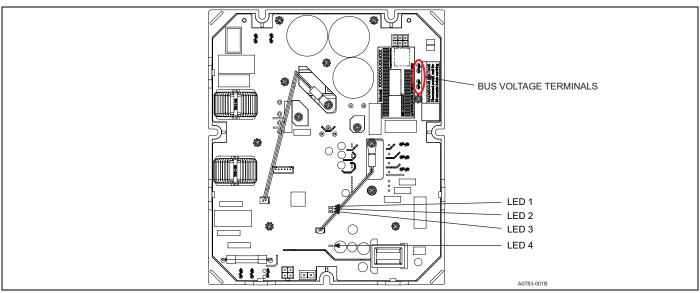



Figure 13: 2 ton inverter drive LED location

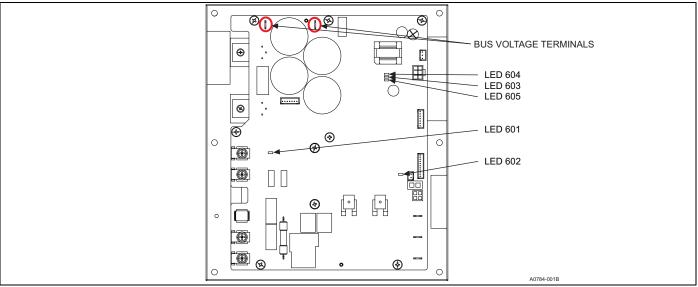



Figure 14: 3 ton and 4 ton inverter drive LED location

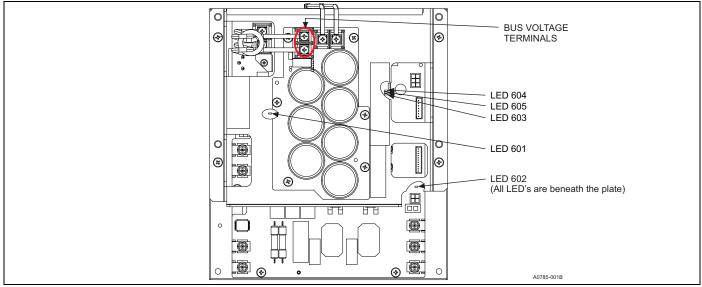



Figure 15: 5 ton inverter drive LED location

| Inverter drive troubleshooting |                                                                                                                                                                                                            |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | ELECTRICAL SHOCK HAZARD                                                                                                                                                                                    |
| <b>A WARNING</b>               | Disconnect and lock out power before servicing.                                                                                                                                                            |
|                                | Wait 2 min to ensure that drive capacitors are discharged before servicing.                                                                                                                                |
|                                | Use compressor with grounded system only.                                                                                                                                                                  |
|                                | <ul> <li>Molded electrical plug must be used for connection to compressor.</li> </ul>                                                                                                                      |
|                                | BURN HAZARD                                                                                                                                                                                                |
| <b>A WARNING</b>               | Failure to follow these warnings could result in serious personal injury or property damage.                                                                                                               |
|                                | Ensure that materials and wiring do not touch high temperature areas of the compressor.                                                                                                                    |
|                                | Personal safety equipment must be used.                                                                                                                                                                    |
|                                | RCD PROTECTION                                                                                                                                                                                             |
| <b>A</b> WARNING               | Be sure to install a Residual Current protective Device (RCD) in accordance with the applicable legislation. Failure to do so may cause electric shock or fire.                                            |
|                                | • Be sure to use a dedicated power circuit, never use a power supply shared by another appliance                                                                                                           |
|                                | <ul> <li>When installing the RCD be sure that it is compatible with the inverter (resistant to high fre quency electric noise and to higher harmonics) to avoid unnecessary opening of the RCD.</li> </ul> |
|                                | The RCD must be a high speed type breaker of 30 mA (<0.1 s).                                                                                                                                               |
|                                | DRIVE HANDLING                                                                                                                                                                                             |
| <b>A</b> CAUTION               | Caution must be used when lifting and installing the drive. Failure to use caution may result in bodily injury.                                                                                            |
|                                | Personal safety equipment must be used.                                                                                                                                                                    |
|                                | <ul> <li>Failure to follow these warnings could result in personal injury or property damage.</li> </ul>                                                                                                   |

· Only gualified and authorized HVAC or refrigeration personnel are permitted to install, commission and maintain this equipment.

- · Electrical connections must be made by qualified electrical personnel.
- All valid standards and codes for installing, servicing, and maintaining electrical and refrigeration equipment must be observed. •

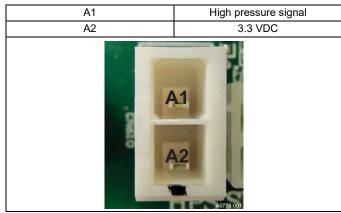
### **Inverter drive led**

There are three control chips on the drive board and all of them have their own LED status display as detailed below. The location of each LED can be found in Figures 13-15.

Operation indicating LED (Green - 1 or 605) - When the drive is in normal or standby state with no protection or fault condition the LED will flash at 0.5 s ON / 0.5 s OFF. If the compressor is running the LED will be solid.

Protection indicating LED (Yellow - 2 or 604) - When the drive is under protection, the yellow LED will flash. Refer to the fault status and troubleshooting section of this bulletin for more information.

Hardware fault indicating LED (Red - 3 or 603) - When the drive is under hardware fault, the red LED will flash. Refer to the fault status and troubleshooting section of this bulletin for more information.


LED for drive control (Green - 4 or 602) - When the drive is in normal state, whether the compressor is running or standby, the LED will flash at 1 s ON / 1 s OFF. When the drive is under protection or hardware fault, the LED will flash at 8 s ON/ 8 s OFF.

LED for power factor correction (Green-601) - When the drive PFC is not in operation, the LED will blink at 1 s ON / 1 s OFF. When the PFC is in operation, the LED will be solid.

Table 9: Thermistor resistance versus temperature table

| TEMP °C    | TEMP °F      | Resistance     | TEMP °C  | TEMP °F        | Resistance   | TEMP °C    | TEMP °F        | Resistance |
|------------|--------------|----------------|----------|----------------|--------------|------------|----------------|------------|
| -40        | -40.0        | 336000         | 22       | 71.6           | 11418        | 84         | 183.2          | 1104       |
| -39        | -38.2        | 314490         | 23       | 73.4           | 10921        | 85         | 185.0          | 1070       |
| -38        | -36.4        | 294520         | 24       | 75.2           | 10449        | 86         | 186.8          | 1037       |
| -37        | -34.6        | 275970         | 25       | 77.0           | 10000        | 87         | 188.6          | 1005       |
| -36        | -32.8        | 258730         | 26       | 78.8           | 9571         | 88         | 190.4          | 974        |
| -35        | -31.0        | 242700         | 27       | 80.6           | 9164         | 89         | 192.2          | 944        |
| -34        | -29.2        | 227610         | 28       | 82.4           | 8776         | 90         | 194.0          | 915        |
| -33        | -27.4        | 213570         | 29       | 84.2           | 8407         | 91         | 195.8          | 889        |
| -32        | -25.6        | 200510         | 30       | 86.0           | 8056         | 92         | 197.6          | 861        |
| -31        | -23.8        | 188340         | 31       | 87.8           | 7720         | 93         | 199.4          | 836        |
| -30        | -22.0        | 177000         | 32       | 89.6           | 7401         | 94         | 201.2          | 811        |
| -29        | -20.2        | 166342         | 33       | 91.4           | 7096         | 95         | 203.0          | 787        |
| -28        | -18.4        | 156404         | 34       | 93.2           | 6806         | 96         | 204.8          | 764        |
| -27        | -16.6        | 147134         | 35       | 95.0           | 6530         | 97         | 206.6          | 742        |
| -26        | -14.8        | 138482         | 36       | 96.8           | 6266         | 98         | 208.4          | 721        |
| -25        | -13.0        | 130402         | 37       | 98.6           | 6014         | 99         | 210.2          | 700        |
| -24        | -11.2        | 122807         | 38       | 100.4          | 5774         | 100        | 212.0          | 680        |
| -23        | -9.4         | 115710         | 39       | 102.2          | 5546         | 101        | 213.8          | 661        |
| -22        | -7.6         | 109075         | 40       | 104.0          | 5327         | 102        | 215.6          | 643        |
| -21        | -5.8         | 102868         | 41       | 105.8          | 5117         | 103        | 217.4          | 626        |
| -20        | -4.0         | 97060          | 42       | 107.6          | 4918         | 104        | 219.2          | 609        |
| -19        | -2.2         | 91588          | 43       | 109.4          | 4727         | 105        | 221.0          | 592        |
| -18        | -0.4         | 86463          | 44       | 111.2          | 4544         | 106        | 222.8          | 576        |
| -17        | 1.4          | 81662          | 45       | 113.0          | 4370         | 107        | 224.6          | 561        |
| -16        | 3.2          | 77162          | 46       | 114.8          | 4203         | 108        | 226.4          | 546        |
| -15        | 5.0          | 72940          | 47       | 116.6          | 4042         | 109        | 228.2          | 531        |
| -14        | 6.8          | 68957          | 48       | 118.4          | 3889         | 110        | 230.0          | 517        |
| -13        | 8.6          | 65219          | 49       | 120.2          | 3743         | 111        | 231.8          | 503        |
| -12        | 10.4         | 61711          | 50       | 122.0          | 3603         | 112        | 233.6          | 489        |
| -11<br>-10 | 12.2         | 58415          | 51       | 123.8          | 3469<br>3340 | 113<br>114 | 235.4<br>237.2 | 476<br>463 |
| -10<br>-9  | 14.0         | 55319          | 52       | 125.6          | 3217         |            |                |            |
|            | 15.8         | 52392          | 53<br>54 | 127.4          |              | 115<br>116 | 239.0          | 450<br>437 |
| -8<br>-7   | 17.6<br>19.4 | 49640<br>47052 | 55       | 129.2<br>131.0 | 3099<br>2986 | 117        | 240.8<br>242.6 | 437        |
| -7<br>-6   | 21.2         | 44617          | 56       | 131.0          | 2980         | 117        | 242.0          | 425        |
| -0<br>-5   | 23.0         | 42324          | 57       | 132.0          | 2774         | 119        | 244.4          | 413        |
| -5<br>-4   | 23.0         | 42324          | 58       | 134.0          | 2675         | 120        | 240.2          | 390        |
| -4         | 24.0         | 38109          | 59       | 138.2          | 2579         | 120        | 248.0          | 390        |
| -3         | 28.4         | 36182          | 60       | 140.0          | 2488         | 121        | 249.0          | 369        |
| -2<br>-1   | 30.2         | 34367          | 61       | 140.0          | 2400         | 122        | 253.4          | 359        |
| 0          | 32.0         | 32654          | 62       | 143.6          | 2315         | 123        | 255.2          | 349        |
| 1          | 33.8         | 31030          | 63       | 145.4          | 2235         | 125        | 257.0          | 340        |
| 2          | 35.6         | 29498          | 64       | 147.2          | 2157         | 126        | 258.8          | 332        |
| 3          | 37.4         | 28052          | 65       | 149.0          | 2083         | 120        | 260.6          | 323        |
| 4          | 39.2         | 26686          | 66       | 150.8          | 2003         | 128        | 262.4          | 315        |
| 5          | 41.0         | 25396          | 67       | 152.6          | 1943         | 129        | 264.2          | 308        |
| 6          | 42.8         | 24171          | 68       | 154.4          | 1876         | 130        | 266.0          | 300        |
| 7          | 44.6         | 23013          | 69       | 156.2          | 1813         | 131        | 267.8          | 293        |
| 8          | 46.4         | 21918          | 70       | 158.0          | 1752         | 132        | 269.6          | 285        |
| 9          | 48.2         | 20883          | 71       | 159.8          | 1693         | 133        | 271.4          | 278        |
| 10         | 50.0         | 19903          | 72       | 161.6          | 1637         | 134        | 273.2          | 272        |
| 11         | 51.8         | 18972          | 73       | 163.4          | 1582         | 135        | 275.0          | 265        |
| 12         | 53.6         | 18090          | 74       | 165.2          | 1530         | 136        | 276.8          | 259        |
| 13         | 55.4         | 17255          | 75       | 167.0          | 1480         | 137        | 278.6          | 253        |
| 14         | 57.2         | 16464          | 76       | 168.8          | 1431         | 138        | 280.4          | 247        |
| 15         | 59.0         | 15714          | 77       | 170.6          | 1385         | 139        | 282.2          | 241        |
| 16         | 60.8         | 15000          | 78       | 172.4          | 1340         | 140        | 284.0          | 235        |
| 17         | 62.6         | 14323          | 79       | 174.2          | 1297         | 141        | 285.8          | 230        |
| 18         | 64.4         | 13681          | 80       | 176.0          | 1255         | 142        | 287.6          | 224        |
| 10         | 66.2         | 13071          | 81       | 177.8          | 1235         | 143        | 289.4          | 219        |
| 20         | 68.0         | 12493          | 82       | 179.6          | 1177         | 143        | 291.2          | 213        |
| 21         | 69.8         | 11942          | 83       | 181.4          | 1140         | 145        | 293.0          | 209        |

#### Table 10: Sensor connector pin definition



### **Pressure switch fault and lockout**

### High pressure switch (HPS) fault

If the compressor is operating and the high pressure switch is recognized as open, the control de-energizes the compressor output. The 5 min ASCD timer starts when the compressor speed reaches 0. The compressor contactor remains off until the high pressure switch has reclosed and the 5 min ASCD timer has been satisfied.

### High pressure switch lockout

If the system recognizes two HPS faults within six hours of accumulated compressor run-time, the system will enter the HPS lockout. During the lockout period, the defrost and compressor relays remain de-energized. While the system is locked out, the Outdoor Display will represent the appropriate fault message as described elsewhere in this document. The system will differentiate between PS faults that occur in heating or defrost modes. This is only for the system to decide which fault code to display. This may help the service person in troubleshooting issues with the unit when this lockout occurs. Otherwise it shouldn't differentiate between heating or defrost modes when counting PS faults.

The six hour timing starts after the ASCD has expired following the first PS fault. The timer only accumulates when the compressor is running. If the system recognizes a second opening of the PS before the six hour timer expires, the system will enter the PS soft lockout. If the system does not recognize a second opening of the PS before the six hour timer expires, the six hour timer is cleared and the PS fault counter is reset.

### Suction pressure sensor fault

The system will monitor the suction pressure during operation. If the suction pressure value falls below the trending limit point and is not increasing, the low suction pressure fault is recognized. The suction pressure must remain below the trending limit for 360 s in cool operation. The low suction pressure fault is bypassed for 120 s upon system startup. If the fault limit value is ever reached for > 5 s a low suction pressure fault is recognized regardless of a bypass time.

Table 11: Low suction pressure limits

| Mode of operation | Trending limit | Fault limit |  |
|-------------------|----------------|-------------|--|
| Cool              | < 90psi        | < 5psi      |  |

### Section X: Instructing the owner

Assist the owner with registering the unit warranty using the warranty card included with the unit, or preferably online at

www.upgproductregistration.com. Complete a startup sheet showing the critical readings of the unit at the time of commissioning, which can be uploaded as part of the online registration process.

When applicable, instruct the owner that the compressor is equipped with a crankcase heater to prevent the migration of refrigerant to the compressor during the OFF cycle. The heater is energized only when the unit is not running. If the main switch is disconnected for long periods of shut down, do not attempt to start the unit until 2 h after the switch has been connected. This will allow sufficient time for all liquid refrigerant to be driven out of the compressor.

The installer should also instruct the owner on proper operation and maintenance of all other system components.

### Maintenance

- Do not allow dirt to accumulate on the outdoor coils or other parts in the air circuit. Clean as often as necessary to keep the unit clean. Use a brush, vacuum cleaner attachment, or other suitable means.
- 2. The outdoor fan motor bearings are permanently lubricated and do not require periodic oiling.
- If the coil needs to be cleaned, wash it with water or a pH neutral detergent. Allow solution to remain on coil for several min before rinsing with clean water. Do not allow the solution to come in contact with painted surfaces.
- 4. Refer to the furnace or air handler instructions for filter and blower motor maintenance.
- 5. Inspect and clean the indoor coil and drain pan regularly to prevent odors and assure adequate drainage.



It is unlawful to knowingly vent, release or discharge refrigerant into the open air during repair, service, maintenance or the final disposal of this unit.

Cooling charge table is on the unit code plate attached to the outside of the control box cover.

## **Section XI: Charging charts**

Table 12: YXV24B21S cooling charging chart

|                    | Indoor wet bulb (°F) at 80°F dry bulb |                                     |           |          |  |  |  |  |  |
|--------------------|---------------------------------------|-------------------------------------|-----------|----------|--|--|--|--|--|
| Outdoor<br>ambient | 57                                    | 62                                  | 67        | 72       |  |  |  |  |  |
| DB (°F)            | Pres                                  | Pressure (PSIG) and subcooling (°F) |           |          |  |  |  |  |  |
|                    |                                       | at liquid b                         | ase valve |          |  |  |  |  |  |
| 55                 | 193 (8)                               | 211 (10)                            | 216 (11)  | 215 (6)  |  |  |  |  |  |
| 60                 | 207 (9)                               | 221 (10)                            | 226 (11)  | 224 (7)  |  |  |  |  |  |
| 65                 | 221 (9)                               | 231 (10)                            | 235 (10)  | 233 (7)  |  |  |  |  |  |
| 70                 | 237 (9)                               | 245 (10)                            | 248 (10)  | 247 (7)  |  |  |  |  |  |
| 75                 | 254 (9)                               | 259 (10)                            | 261 (10)  | 260 (7)  |  |  |  |  |  |
| 80                 | 275 (10)                              | 278 (10)                            | 279 (10)  | 278 (8)  |  |  |  |  |  |
| 85                 | 296 (10)                              | 296 (10)                            | 297 (9)   | 296 (8)  |  |  |  |  |  |
| 90                 | 320 (10)                              | 319 (10)                            | 320 (9)   | 319 (8)  |  |  |  |  |  |
| 95                 | 344 (10)                              | 341 (10)                            | 342 (9)   | 341 (8)  |  |  |  |  |  |
| 100                | 372 (11)                              | 368 (11)                            | 369 (10)  | 368 (9)  |  |  |  |  |  |
| 105                | 399 (11)                              | 395 (11)                            | 396 (10)  | 395 (9)  |  |  |  |  |  |
| 110                | 430 (12)                              | 427 (12)                            | 428 (11)  | 427 (10) |  |  |  |  |  |
| 115                | 460 (12)                              | 458 (12)                            | 459 (11)  | 459 (10) |  |  |  |  |  |
| 120                | 495 (13)                              | 494 (13)                            | 495 (12)  | 496 (11) |  |  |  |  |  |
| 125                | 529 (13)                              | 529 (13)                            | 531 (12)  | 532 (12) |  |  |  |  |  |

Charging chart is for use in Service mode only.

Charging chart is for use in Cooling mode only.

## Table 13: YXV36B21S cooling charging chart

|                    | Indoor wet bulb (°F) at 80°F dry bulb                       |          |          |          |  |  |  |
|--------------------|-------------------------------------------------------------|----------|----------|----------|--|--|--|
| Outdoor<br>ambient | 57                                                          | 57 62 67 |          |          |  |  |  |
| DB (°F)            | Pressure (PSIG) and subcooling (°F)<br>at liquid base valve |          |          |          |  |  |  |
| 55                 | 188 (8)                                                     | 190 (9)  | 195 (11) | 197 (12) |  |  |  |
| 60                 | 205 (8)                                                     | 206 (8)  | 210 (10) | 211 (11) |  |  |  |
| 65                 | 221 (8)                                                     | 222 (8)  | 224 (9)  | 226 (9)  |  |  |  |
| 70                 | 238 (8)                                                     | 237 (8)  | 239 (8)  | 240 (8)  |  |  |  |
| 75                 | 254 (8)                                                     | 253 (7)  | 254 (7)  | 254 (6)  |  |  |  |
| 80                 | 278 (8)                                                     | 277 (8)  | 277 (7)  | 277 (6)  |  |  |  |
| 85                 | 302 (9)                                                     | 301 (8)  | 300 (7)  | 300 (6)  |  |  |  |
| 90                 | 326 (9)                                                     | 324 (9)  | 324 (8)  | 322 (6)  |  |  |  |
| 95                 | 351 (10)                                                    | 348 (9)  | 347 (8)  | 345 (6)  |  |  |  |
| 100                | 381 (10)                                                    | 379 (10) | 378 (8)  | 376 (7)  |  |  |  |
| 105                | 412 (10)                                                    | 410 (10) | 409 (9)  | 407 (7)  |  |  |  |
| 110                | 443 (11)                                                    | 441 (10) | 440 (9)  | 438 (8)  |  |  |  |
| 115                | 474 (11)                                                    | 472 (10) | 471 (9)  | 469 (8)  |  |  |  |
| 120                | 505 (11)                                                    | 503 (11) | 501 (10) | 501 (9)  |  |  |  |
| 125                | 535 (12)                                                    | 534 (11) | 532 (10) | 532 (9)  |  |  |  |

Charging chart is for use in Service mode only. Charging chart is for use in Cooling mode only.

## Table 14: YXV48B21S cooling charging chart

|                    | Indoor wet bulb (°F) at 80°F dry bulb |             |           |         |  |  |
|--------------------|---------------------------------------|-------------|-----------|---------|--|--|
| Outdoor<br>ambient | 57                                    | 62          | 67        | 72      |  |  |
| DB (°F)            | Pressure (PSIG) and subcooling (°F)   |             |           |         |  |  |
|                    |                                       | at liquid b | ase valve |         |  |  |
| 55                 | 191(10)                               | 192(10)     | 194(11)   | 194(12) |  |  |
| 60                 | 207(10)                               | 208(10)     | 210(11)   | 211(11) |  |  |
| 65                 | 224(10)                               | 225(10)     | 227(11)   | 229(11) |  |  |
| 70                 | 242(10)                               | 244(10)     | 246(11)   | 248(11) |  |  |
| 75                 | 262(10)                               | 263(10)     | 266(11)   | 268(11) |  |  |
| 80                 | 282(10)                               | 284(10)     | 287(11)   | 290(11) |  |  |
| 85                 | 304(10)                               | 306(10)     | 309(11)   | 312(11) |  |  |
| 90                 | 327(10)                               | 329(10)     | 332(11)   | 335(11) |  |  |
| 95                 | 352(10)                               | 353(10)     | 356(11)   | 360(11) |  |  |
| 100                | 377(10)                               | 378(10)     | 382(11)   | 386(11) |  |  |
| 105                | 403(10)                               | 405(10)     | 408(11)   | 412(11) |  |  |
| 110                | 431(10)                               | 432(10)     | 436(11)   | 440(11) |  |  |
| 115                | 460(10)                               | 461(11)     | 465(11)   | 469(11) |  |  |
| 120                | 490(11)                               | 491(11)     | 494(11)   | 499(11) |  |  |
| 125                | 521(11)                               | 522(11)     | 526(11)   | 530(11) |  |  |

Charging chart is for use in Service mode only. Charging chart is for use in Cooling mode only.

### Table 15: YXV60B21S Cooling charging chart

|                    | indoor wet bulb (°F) at 80°F dry bulb                       |         |         |         |  |  |
|--------------------|-------------------------------------------------------------|---------|---------|---------|--|--|
| Outdoor<br>ambient | 57                                                          | 72      |         |         |  |  |
| DB (°F)            | Pressure (PSIG) and subcooling (°F)<br>at liquid base valve |         |         |         |  |  |
| 55                 | 194(9)                                                      | 194(9)  | 196(10) | 197(11) |  |  |
| 60                 | 210(9)                                                      | 210(10) | 212(10) | 214(11) |  |  |
| 65                 | 227(10)                                                     | 227(10) | 229(10) | 231(11) |  |  |
| 70                 | 245(10)                                                     | 246(10) | 248(10) | 250(10) |  |  |
| 75                 | 264(10)                                                     | 265(10) | 268(10) | 270(10) |  |  |
| 80                 | 285(10)                                                     | 286(10) | 288(10) | 291(10) |  |  |
| 85                 | 307(10)                                                     | 308(10) | 311(10) | 313(10) |  |  |
| 90                 | 330(10)                                                     | 331(10) | 334(10) | 337(10) |  |  |
| 95                 | 354(10)                                                     | 356(10) | 358(10) | 362(10) |  |  |
| 100                | 379(10)                                                     | 381(10) | 384(10) | 388(10) |  |  |
| 105                | 406(10)                                                     | 408(10) | 411(10) | 415(10) |  |  |
| 110                | 434(10)                                                     | 436(10) | 439(10) | 443(10) |  |  |
| 115                | 463(10)                                                     | 465(11) | 469(11) | 473(11) |  |  |
| 120                | 494(10)                                                     | 496(11) | 499(11) | 503(11) |  |  |
| 125                | 525(10)                                                     | 527(11) | 531(11) | 535(11) |  |  |

Charging chart is for use in Service mode only. Charging chart is for use in Cooling mode only.

## NOTES

### Section XII: Wiring diagram

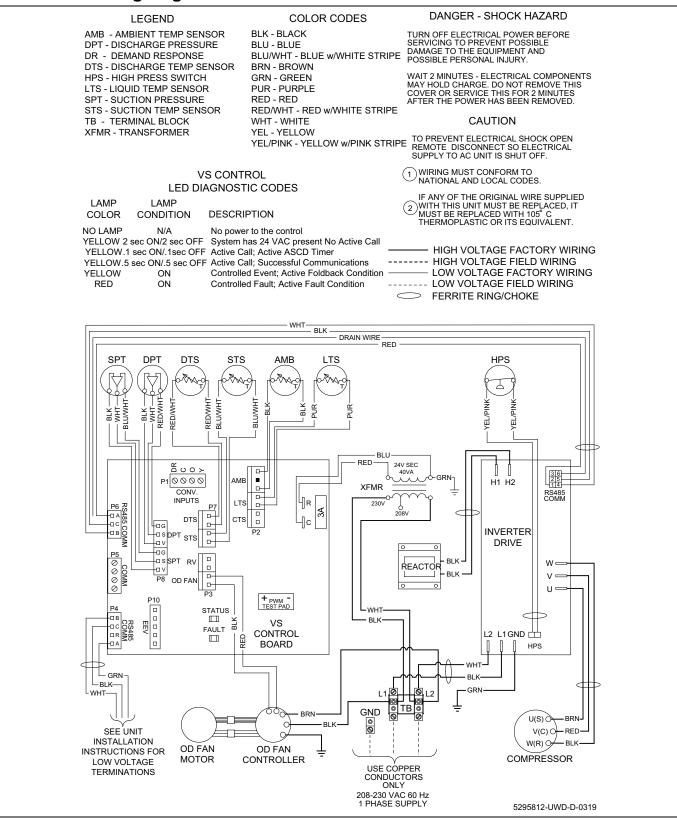



Figure 16: Wiring diagram - 2 ton

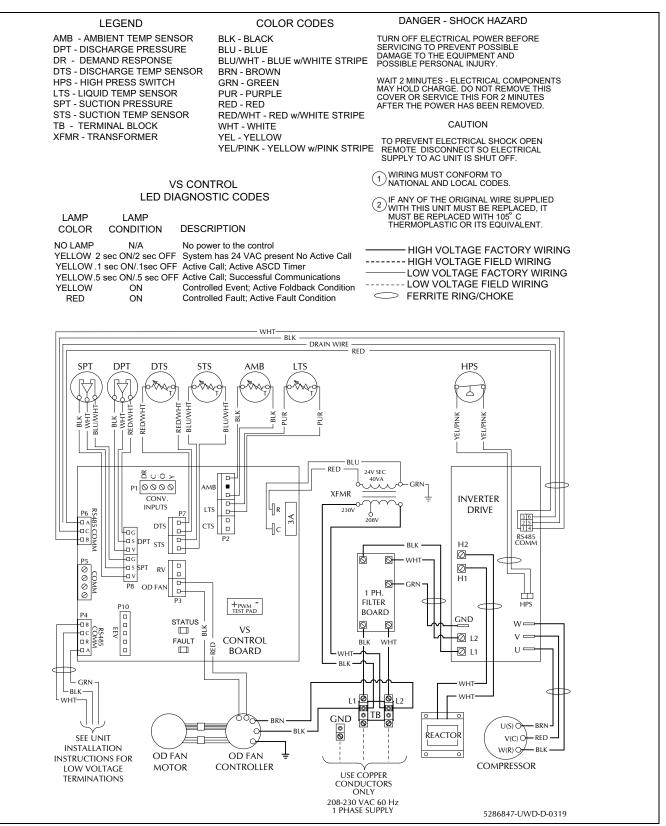



Figure 17: Wiring diagram - 3 ton to 5 ton

## Section XIII: Start up sheet

Residential Split Variable Capacity System Unit Cooling With Electric Heat Start-Up Sheet Proper start-up is critical to customer comfort and equipment longevity

| Start-Up Date Company Name                                                                                          |                                                                                                          |                       |                      | Start-Up T | Fechnician           |             |       |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|----------------------|------------|----------------------|-------------|-------|
| Dealer Training Certification Number                                                                                |                                                                                                          |                       |                      |            |                      |             |       |
| Owner Information                                                                                                   | 1                                                                                                        |                       |                      | ·          |                      |             |       |
| Name                                                                                                                | A                                                                                                        | ddress                |                      |            | Daytime Phone        |             |       |
| City                                                                                                                |                                                                                                          | State or Provinc      | e                    |            | Zip or Postal Code   |             |       |
| Equipment Data                                                                                                      |                                                                                                          |                       |                      |            |                      |             |       |
| Outdoor Model #                                                                                                     |                                                                                                          |                       | Unit Serial #        |            |                      |             |       |
| Indoor Model #                                                                                                      |                                                                                                          |                       | Unit Serial #        |            |                      |             |       |
| General Informatio                                                                                                  | n (Check all th                                                                                          | nat apply)            |                      |            |                      |             |       |
| O New Construction                                                                                                  | O Ro                                                                                                     | oof level             | 🔿 Down               | flow       | ОН                   | orizontal   |       |
| 🔿 Retrofit                                                                                                          | 🔿 Gr                                                                                                     | ade level             |                      | V          |                      |             |       |
| Unit Location and                                                                                                   |                                                                                                          |                       | 11 27                |            |                      |             |       |
| Unit is level and insta                                                                                             |                                                                                                          |                       | Duct connection      |            |                      | -           | turn  |
| Condensate drain pro                                                                                                | operly connected                                                                                         | d per the installatio | on instructions      | Conde      | ensate trap has beer | primed with | water |
| Filters                                                                                                             |                                                                                                          |                       |                      |            |                      |             |       |
| Filters installed Nu                                                                                                | Filters installed Number of filters Filter size Filter size Filter located inside Filter located outside |                       |                      |            |                      |             |       |
| Electrical Connections & Inspection (Check all that apply)                                                          |                                                                                                          |                       |                      |            |                      |             |       |
| ○ 208 volts AC (                                                                                                    | 230 volt AC                                                                                              |                       |                      |            |                      |             |       |
| Inspect wires and electrical connections 🗌 Transformer wired properly for primary supply voltage 🗌 Ground connected |                                                                                                          |                       |                      |            |                      |             |       |
| Low voltage present at control board "R & C"     Measured voltage "R" and "C" outdoor unit control board            |                                                                                                          |                       |                      |            |                      |             |       |
| Line voltage present at disconnect     Measured voltage "L1 to L2"                                                  |                                                                                                          |                       |                      |            |                      |             |       |
| Compressor amperes "L1" Total amperes "L1" "L2"                                                                     |                                                                                                          |                       |                      |            |                      |             |       |
| Air Flow Setup / Co                                                                                                 | ooling                                                                                                   |                       |                      |            |                      |             |       |
| Blower Type                                                                                                         | _                                                                                                        | COOL ()               | A C                  | В          | ОC                   | OD          |       |
| &                                                                                                                   | ⊖ ECM                                                                                                    | ADJUST 🔿              | A C                  | В          | Сс                   | OD          |       |
| Set-Up                                                                                                              |                                                                                                          | DELAY O               | A C                  | В          | ОC                   | OD          |       |
| Supply static (inches of w                                                                                          | vater column)                                                                                            | Supply air c          | Iry bulb temperature | e 🗌 !      | Supply air wet bulb  | temperature |       |
| Return static (inches of w                                                                                          | vater column)                                                                                            | Return air d          | ry bulb temperature  |            | Return air wet bulb  | temperature |       |
| Total external static press                                                                                         | sure                                                                                                     | Temperatu             | re drop              |            | Outside air dry bulb | temperature |       |

Page 1 of 2 (3/14/17)

## **Refrigerant Charge and Metering Device**

| C R-410A                      | Suction line temperature | Discharge pressure      |
|-------------------------------|--------------------------|-------------------------|
| Data plate - lbs / Oz         | Suction pressure         | Liquid line temperature |
| Discharge line<br>temperature | Superheat                | Subcooling              |

### **Electric Heat**

| Electric heat kit - Moo                    | del number                                |                                     | Serial number |          | Rated KW             |
|--------------------------------------------|-------------------------------------------|-------------------------------------|---------------|----------|----------------------|
| C Cingle Phase                             | Heater 1<br>Measured Amperage<br>Heater 4 |                                     |               | Heater 2 | Heater 3             |
| Single Phase                               |                                           |                                     |               | Heater 5 | Heater 6             |
| Number                                     | Measured Volta                            | Heater 1                            |               | Heater 2 | Heater 3             |
| of elements                                | Heat                                      |                                     |               | Heater 5 | Heater 6             |
| Heating return air<br>dry bulb temperature |                                           | Heating supply a dry bulb temperati |               |          | Air temperature rise |

### **Clean Up Job Site**

Job site has been cleaned, indoor and outdoor debris removed from job site

Tools have been removed from unit

All panels have been installed

### **Unit Operation and Cycle Test**

Operate the unit through continuous fan cycles from the thermostat, noting and correcting any problems

Operate the unit through cooling cycles from the thermostat, noting and correcting any problems

### **Owner Education**

| S | Se | tup                                                                            |
|---|----|--------------------------------------------------------------------------------|
| Γ |    | Explain the importance of regular filter replacement and equipment maintenance |
| Γ |    | Explain thermostat use and programming (if applicable) to owner                |
| Г |    | Explain operation of system to equipment owner                                 |
| Γ |    | Provide owner with the owner's manual                                          |

| WiFi enabled: Yes 🗌 No 🦳             |
|--------------------------------------|
| Demand response enabled: Yes 🕅 No 🦳  |
| Fan Profile: Normal 🔽 Arid 🔽 Humid 🗌 |

## **Comments and Additional Job Details**

Page 2 of 2 (3/14/17)

Subject to change without notice. Published in U.S.A. Copyright  $\ensuremath{\mathbb{C}}$  2022 by Johnson Controls. All rights reserved.

6294209-UIM-A-1122 Supersedes: 5846135-UIM-B-0320